Inter-Client Communication
Conventions Manual

X Consortium Standard

David Rosenthal, Sun Microsystems, Inc.
Edited by Stuart W. Marks

Inter-Client Communication Conventions Manual: X Consortium
Standard

by David Rosenthal and Stuart W. Marks

X Version 11, Release 7.7

Version 2.0
Copyright © 1988, 1991, 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the " Software"),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.
Copyright © 1987, 1988, 1989, 1993, 1994 Sun Microsystems, Inc

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in al copies. Sun Microsystems makes no representations about the suitability for any purpose
of theinformation in this document. This documentation is provided as is without express or implied warranty.

Table of Contents

Preface 10 VEISION 2.0 ...t %
Preface 10 VEISION L1 ...ttt r et Vi
O [gL oo (0 1o o R PP PPPPTI 1
Evolution of the CONVENLIONScoiuiiieiiii et e e e 1

A OIS et 1
WHEE ATE ATOMS? ..ottt ettt e e e e e ab e eeee 2

Predefined ATOMS ... e e 2

NEMING CONVENTIONS ...ttt ettt e et e et e e e e e e 2

S 1172 1011 o ST PP TPPPPT 2

NBIME SPBCES ... ettt et et 3
DisCriminated NBIMESiieiiiieiiie et e et e e 3

2. Peer-to-Peer Communication by Means of SEleCtionScoveuiiiiiiiiiiiiii e 5
Acquiring SEleCtion OWNEISNIPcceveuiiiiii et e 5
Responsibilities of the SEleCtion OWNEYi i 6
Giving Up SeleCtion OWNEISNIP ...ceevuieiiitiieeeeit ettt ettt e et e e 9
Voluntarily Giving Up Selection OWNEIShiPccuuuiiieiiiieeiiiiieeeeii et 9

Forcibly Giving Up Selection OWNErShiPccoevuiieiiiiiiieciii e 9
REJUESEING 8 SEIECLIONeevti ettt et e e e e e e e eees 9
Large Data TranSFarSuu ittt et e 11

USE Of SEECHION ALOMIS ...t ettt e e e e eeneans 12
SEECHION ATOIMS ...ttt e e et e e ettt e e e erb e e eeraaeeeens 12

TAQEE ATOIMIS ..ttt 13

Selection Targets with Side EffeCtScooovviiiiiii e 16

Use Of SElECtioN PrOPEMTIEScouuiiiiiii et e e e e e e eees 17
TEXT PrOPEITIES ..ottt e e e 18

INCR PrOPEITIES . .oeveiieeii ettt ettt e ettt e e et e e eaea e eenes 18
DRAWABLE PrOPEItIES ...ttt 19

SPAN PrOPEITIES ...ttt ettt ettt 19

MaBNAGEr SEIECHIONSeeeieieeti ettt ettt e e e 20

3. Peer-to-Peer Communication by Means of Cut BUFfErSuviiiiiiiiiiiiiicc e 22
4. Client-to-Window-Manager COMMUNICAIONcceeutueiiiiieeeiii et e et e eer e eeni e eens 23
ClIENE'S ACHIONS ...ttt e e e et e e e e e e 23
Creating a Top-Level WINAOWccoouiiiiiiiiii e 23

ClIENT PrOPEITIES ..ottt ettt et e e e enaas 24

Window Manager ProPErtiEScieeuui ittt et eeees 31

Changing WINAOW SEEEEoiiiiiiieiiii e 32
Configuring the WINAOWccoouiiiiiii e 34

Changing Window AIDULESiiiiiici e 36

INPUL FOCUS ...ttt et e e e e e e e e eae e 37

1600] o)1 10710 = SRR SPPPT 39

o] 1 PP PPTIPPT 41

POP-UDP WINGOWS ...ttt ettt e ettt e e et e e eare e eenes 42

WWINOAOW GFOUPDS ...ttt ettt ettt ettt e et e e e et e e e eae s 43

Client Responses to Window Manager ACHONScoeuuuieiiiiiiieeiii e e e 43
REDAIENTING ...ttt 43
Redirection Of OPEraliONSccuuueiiiii et eae e 44

WINAOW IMOVE ...ttt e e e 45

WINAOW RESIZE ...t 46

[conify aNd DEICONITYvuiiiiiiiiee e 46

Colorma CRANGE .. .covtieeiiie e ettt e e e 46

INPUL FOCUS ...ttt ettt et e e e e e e e 46

Inter-Client Communica-
tion Conventions Manua

CHENtMESSAgE EVENES .. .cvviiiii e e e e e e e e aaaas 47
REAITECHiNG REQUESEScivii i e e e e e e e e e eens 48
Communication with the Window Manager by Means of Selections............c.cccovevviveinnn. 48
Summary of Window Manager Property TYPEScvuuiiiiieeii e eee e e e e e e e e 49

5. Session Management and Additional Inter-Client EXChangescc.ooevviiiiiiiiiiiiciiiece e 50
Client Support for Session ManagemMENTcceuuieiiiieiie e e e e e e s e e e e eees 50
Window Manager Support for Session Managementc..cvevuvieiiiieeiiiieciieeei e e eeen 51
Support for ICE Client RENAEZVOUSccuuiiiiiiiiiii et e e e e aens 51

6. Manipulation of Shared RESOUICESccuuiiiiiiiiii e e e e e e 52
TRE INPUL FOCUSuniiiiieie et e e e e e e e e et e e et e et e e et e eaanaees 52

I 0= o L= PSPPSR 52

L =0 PP 52

(0] o g1 7= < 53

The Keyboard MappinQgc.uoeiiiiiieee e e e e e e e e e e e e e e e e et e e e eeees 54

I LR o o 1 = 1Y, = o] oo P 55

7. Device Color CharaCteriZatioNceeuuuieeiiii e et e e e e e et e e et e e e eetaa e e e eereeeaeees 57
XYZ <-> RGB CONVErSION MEITICES .. .cevvviieiiiiiieeeiii et e et e et e e e e e e e eeeaenns 57
Intensity (dA RGB Value CONVEISIONcvuuieiiieiiieeeei et ee st e e e e e e st e e et e e st eeaaneeaens 58

S o oo 11 =T o PP 61
LIS R = o[1 Y/ 61

YN =Y o) o) Y/ 62
THE XLLR2 DIt ...ieeiiiiieeeeii ettt et e et e e et e e e et e e e et e e e ena s 62

The July 27, 1988, DIaff ..eeuuuiieiiii e e e et e e e es 62

The PUDIIC REVIEW DIEfIS ..eevuiiiiii e e s 62
Version 1.0, JULY 1989cieuiiiiiiiii et 63

RV = Lo o 1 5 SRR RSPPPIN 64
Public Review Draft, December 1993coouuiiiiiiiiie e 64
Version 2.0, APril 1994 ... 65

B. Suggested ProtOCOl REVISIONSciuuiiiiieiiii e e e e e e e e e anas 66
C. Obsolete Session Manager CONVENTIONScvuueiiiieiiee et eee e e e e e e e e e e e e e eaneeees 67
0] 0= =P 67
WM_COMMAND PrOPEMY .vvuieieiiieieii ettt e et e et e e et eeeaan s 67
WM_CLIENT_MACHINE PrOPEMY .vvueiieiiieiiiiisee et eeei et e e e eani e eeaeen 67

B 1 1011 0= 1o TSP 67
Client Responses to Session Manager ACHIONSiiiuiciiii e e e e e e e 68
SAVING CHENE SEALE ..ovuniiii i e e e e e e et e e e e e aaaas 68

WINAOW DEIBHION ...t e e e et e e et e e e e aan e 69

Summary of Session Manager Property TYPESuvvuniiiii e ee e e e e e aens 69

Preface to Version 2.0

Thegoal of theICCCM Version 2.0 effort wasto add new facilities, to fix problemswith earlier drafts, and
to improve readability and understandability, while maintaining compatibility with the earlier versions.
This document is the product of over two years of discussion among the members of the X Consortium's
wirt al k working group. The following people deserve thanks for their contributions:

Gabe Beged- Dov Bill Janssen
Chan Benson Vani a Jol obof f
Jordan Brown Phil Karlton
Larry Cable Kal eb Kei t hl ey
Ellis Cohen Mar k Manasse
Donna Converse Ral ph Mor
Brian Cripe Todd Newran
Susan Dahl berg Bob Scheifler
Pet er Dai f uku Keith Tayl or
Andr ew deBl oi s Ji m VanG | der
dive Feather M ke Wexl er

St ephen G | dea M chael Yee

Christian Jacobi
It has been a privilege for me to work with this fine group of people.
Stuart W. Marks

December 1993

Preface to Version 1.1

David Rosenthal had overall architectural responsibility for the conventions defined in this document; he
wrote most of the text and edited the document, but its development has been a communal effort. The
details were thrashed out in meetings at the January 1988 MIT X Conference and at the 1988 Summer
Usenix conference, and through months (and megabytes) of argument on thewnt al k mail aias. Thanks
are due to everyone who contributed, and especialy to the following people.

For the Selection section:

Jerry Farrell
Phil Karlton

Loretta Guarino Reid

Mar k Manasse
Bob Schei fl er

For the Cut-Buffer section:

Andr ew Pal ay

For the Window and Session Manager sections:

Todd Brunhof f

El lis Cohen
Jim Fulton

Hani a Gaj ewska
Jor dan Hubbard
Kerry Ki nmbrough
Audr ey | shi zaki

Matt Landau
Mar k Manasse
Bob Schei fl er
Ral ph Swi ck
M ke Weéxl er
d enn W dener

For the Device Color Characterization section:

Kei t h Packard

In addition, thanks are due to those who contributed to the public review:

Gary Conbs
Errol Crary
Nancy Cyprych
John Di amant
Clive Feather
Bur ns Fi sher
Ri chard Greco
Ti m G eenwood
Kee Hi nckl ey
Bri an Holt
John Interrante

John lrwn
Vani a Jol obof f
John Laporta
Ken Lee
Stuart Marks
Alan M ms

Col as Nahaboo
Mar k Patrick
St eve Pitschke
Brad Reed
John Thonas

Vi

Chapter 1. Introduction

It was an explicit design goal of X Version 11 to specify mechanism, not policy. As aresult, aclient that
converses with the server using the protocol defined by the X Window System Protocol, Version 11 may
operate correctly in isolation but may not coexist properly with others sharing the same server.

Being agood citizen in the X Version 11 world involves adhering to conventions that govern inter-client
communicationsin the following areas:

* Selection mechanism

» Cut buffers

» Window manager

* Session manager

» Manipulation of shared resources
* Device color characterization

This document proposes suitable conventions without attempting to enforce any particular user interface.
To permit clients written in different languages to communicate, these conventions are expressed solely
in terms of protocol operations, not in terms of their associated Xlib interfaces, which are probably more
familiar. The binding of these operations to the Xlib interface for C and to the equivalent interfaces for
other languages is the subject of other documents.

Evolution of the Conventions

In theinterests of timely acceptance, the Inter-Client Communi cation Conventions Manual (ICCCM) cov-
ersonly aminimal set of required conventions. These conventions will be added to and updated as appro-
priate, based on the experiences of the X Consortium.

Asfar as possible, these conventions are upwardly compatible with those in the February 25, 1988, draft
that was distributed with the X Version 11, Release 2, of the software. In some areas, semantic problems
were discovered with those conventions, and, thus, complete upward compatibility could not be assured.
These areas are noted in the text and are summarized in Appendix A.

In the course of developing these conventions, a number of minor changes to the protocol were identified
as desirable. They also are identified in the text, are summarized in Appendix B, and are offered as input
to a future protocol revision process. If and when a protocol revision incorporating these changes is un-
dertaken, it is anticipated that the ICCCM will need to be revised. Because it is difficult to ensure that
clients and servers are upgraded simultaneously, clients using the revised conventions should examine the
minor protocol revision number and be prepared to use the older conventions when communicating with
an older server.

It is expected that these revisions will ensure that clients using the conventions appropriate to protocol
minor revision n will interoperate correctly with those that use the conventions appropriate to protocol
minor revision n + 1 if the server supports both.

Atoms

Many of the conventions use atoms. To assist the reader, the following sections attempt to amplify the
description of atoms that is provided in the protocol specification.

Introduction

What Are Atoms?

At the conceptual level, atoms are unique names that clients can use to communicate information to each
other. They can be thought of as a bundle of octets, like a string but without an encoding being specified.
The elements are not necessarily ASCI| characters, and no case folding happens.

The protocol designers felt that passing these sequences of bytes back and forth across the wire would be
too costly. Further, they thought it important that eventsasthey appear onthewire have afixed size (infact,
32 bytes) and that because some events contain atoms, a fixed-size representation for them was needed.

To alow afixed-size representation, a protocol request (| nt er nAt om) was provided to register a byte
sequence with the server, which returns a 32-bit value (with the top three bits zero) that maps to the byte
seguence. Theinverse operator is also available (Get At omNane).

Predefined Atoms

The protocol specifies anumber of atoms as being predefined:

Predefined atoms are not strictly necessary and may not be useful in al environments,
but they will eliminate many | nt er nAt omrequests in most applications. Note that
they are predefined only in the sense of having numeric values, not in the sense of having
required semantics.

Predefined atoms are an implementation trick to avoid the cost of interning many of the atoms that are
expected to be used during the startup phase of all applications. Theresultsof thel nt er nAt omrequests,
which require a handshake, can be assumed a priori.

Language interfaces should probably cache the atom-name mappings and get them only when required.
The CLX interface, for instance, makes no distinction between predefined atomsand other atoms; all atoms
are viewed as symbols at the interface. However, a CL X implementation will typically keep a symbol or
atom cache and will typically initialize this cache with the predefined atoms.

Naming Conventions

The built-in atoms are composed of uppercase ASCIl characters with the logica words sepa
rated by an underscore character (), for example, WM_ICON_NAME. The protocol specifica-
tion recommends that atoms used for private vendor-specific reasons should begin with an under-
score. To prevent conflicts among organizations, additional prefixes should be chosen (for example,
DEC WM_DECORATION_GEOMETRY).

The names were chosen in this fashion to makeit easy to use them in anatural way within LI1SP. Keyword

constructors allow the programmer to specify theatomsasL1SP atoms. If the atomswere not all uppercase,
special quoting conventions would have to be used.

Semantics

The core protocol imposes ho semantics on atoms except as they are used in FONTPROP structures. For
further information on FONTPROP semantics, see the X Logical Font Description Conventions.

1 The commentinthe protocol specification for | nt er nAt omthat SO Latin-1 encoding should be used isin the nature of aconvention; the server
treats the string as a byte sequence.

Introduction

Name Spaces

The protocol defines six distinct spaces in which atoms are interpreted. Any particular atom may or may
not have some valid interpretation with respect to each of these name spaces.

Space Briefly Examples

Property name Name WM_HINTS, WM_NAME, RGB_BEST_MAP, ...
Property type Type WM_HINTS, CURSOR, RGB_COLOR_MAP, ...
Selection name Selection PRIMARY, SECONDARY, CLIPBOARD

Selection target Target FILE_NAME, POSTSCRIPT, PIXMAP, ...

Font property QUAD_WIDTH, POINT_SIZE, ...

C i ent Message type WM_SAVE_YOURSELF, _DEC SAVE_EDITS, &...

Discriminated Names

Sometimes a protocol requires an arbitrary number of similar objects that need unique names (usually
because the objects are created dynamically, so that names cannot be invented in advance). For example,
a colormap-generating program might use the selection mechanism to offer colormaps for each screen
and so needs a selection name for each screen. Such names are called "discriminated names' and are
discriminated by some entity. This entity can be:

A screen
An X resource (a wi ndow, a colormap, a visual, etc.)
A client

If it isonly necessary to generate afixed set of namesfor each value of the discriminating entity, then the
discriminated names are formed by suffixing an ordinary name according to the value of the entity.

If name is a descriptive portion for the name, d is a decimal number with no leading zeroes, and x is a
hexadecimal number with exactly 8 digits, and using uppercase letters, then such discriminated names
shall have the form:

Name Discriminated by Form Example
screen number name_Sd WM_COMMS S2
X resource name_RX GROUP_LEADER_R1234ABCD

To discriminate a name by client, use an X resource |D created by that client. This resource can be of
any type.

Sometimes it is simply necessary to generate a unique set of names (for example, for the properties on a
window used by aMULTIPLE selection). These names should have the form:

ud (e.g., W UL W2 W ...)

if the names stand totally alone, and the form:

name_Ud (e.g., FOO U0 BAR W FOO UL BAR UL ...)

Introduction

if they come in sets (here there are two sets, named "FOQO" and "BAR"). The stand-alone Ud form should
be used only if it is clear that the module using it has complete control over the relevant namespace or
has the active cooperation of all other entities that might also use these names. (Naming properties on a
window created specifically for aparticular selection is such a use; naming properties on the root window
isamost certainly not.)

In a particularly difficult case, it might be necessary to combine both forms of discrimination. If this
happens, the U form should come after the other form, thus:

FOO R12345678_U23

Rationale

Existing protocols will not be changed to use these naming conventions, because doing
so will cause too much disruption. However, it is expected that future protocols -- both
standard and private -- will use these conventions.

Chapter 2. Peer-to-Peer
Communication by Means of
Selections

Selections are the primary mechanism that X Version 11 defines for the exchange of information between
clients, for example, by cutting and pasting between windows. Note that there can be an arbitrary number
of selections (each named by an atom) and that they are global to the server. Use of Selection Atoms.
discusses the choice of an atom. Each selection is owned by aclient and is attached to a window.

Sel ections communi cate between an owner and arequestor. The owner has the data representing the value
of itsselection, and the requestor receivesit. A requestor wishing to obtain the value of aselection provides
the following:

* The name of the selection

» The name of a property

* A window

» The atom representing the data type required

» Optionaly, some parameters for the request

If the selection is currently owned, the owner receives an event and is expected to do the following:
» Convert the contents of the selection to the requested data type

 Place this datain the named property on the named window

» Send the requestor an event to let it know the property is available

Clients are strongly encouraged to use this mechanism. In particular, displaying text in a permanent win-
dow without providing the ability to select and convert it into a string is definitely considered antisocial.

Note that all data transferred between an owner and a requestor must usually go by means of the server in
an X Version 11 environment. A client cannot assume that another client can open the same files or even
communicate directly. The other client may be talking to the server by means of a completely different
networking mechanism (for example, one client might be DECnet and the other TCP/IP). Thus, passing
indirect references to data (such as, file names, host names, and port numbers) is permitted only if both
clients specifically agree.

Acquiring Selection Ownership

A client wishing to acquire ownership of a particular selection should call Set Sel ecti onOaner,
which is defined as follows:

Set Sel ecti onOmer

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP o or Current Ti ne

Peer-to-Peer Communica
tion by Means of Selections

The client should set the specified selection to the atom that represents the selection, set the specified
owner to some window that the client created, and set the specified time to some time between the current
last-change time of the selection concerned and the current server time. This time value usually will be
obtained from the timestamp of the event that triggers the acquisition of the selection. Clients should not
set thetimevalueto Cur r ent Ti ne, becauseif they do so, they have no way of finding when they gained
ownership of the selection. Clients must use awindow they created so that requestors can route events to
the owner of the selection.!

Convention

Clients attempting to acquire a selection must set the time value of the Set Sel ec-
ti onOaner reguest to the timestamp of the event triggering the acquisition attempt,
not to Cur r ent Ti me. A zero-length append to a property is away to obtain atimes-
tamp for this purpose; thetimestamp isin the corresponding Pr oper t yNot i fy event.

If the timein the Set Sel ect i onOwner request isin the future relative to the server's current time or
isin the past relative to the last time the specified selection changed hands, the Set Sel ecti onOaner
request appears to the client to succeed, but ownership is not actually transferred.

Because clients cannot name other clientsdirectly, the specified owner window is used to refer to the own-
ing client in therepliesto Get Sel ecti onOaner ,inSel ecti onRequest and Sel ecti onCl ear
events, and possibly asaplaceto put properties describing the selection in question. To discover the owner
of aparticular selection, a client should invoke Get Sel ect i onOaner , which is defined as follows:

Cet Sel ecti onOaner

selection: ATOM
->
owner: WINDOW or None
Convention
Clients are expected to provide some visible confirmation of selection ownership. To

make this feedback reliable, a client must perform a sequence like the following:

Set Sel ecti onOaner (sel ecti on=PRI MARY, owner =W ndow, ti ne=ti mestanp)
owner = Get Sel ecti onOmer (sel ecti on=PRI MARY)
if (owner !'= Wndow) Failure

If theSet Sel ect i onOaner request succeeds (not merely appearsto succeed), the client that issuesitis
recorded by the server as being the owner of the selection for the time period starting at the specified time.

Responsibilities of the Selection Owner

When arequestor wantsthe val ue of aselection, theowner receivesaSel ect i onRequest event, which
is defined as follows:

Sel ecti onRequest

LAt present, no part of the protocol requires requestors to send events to the owner of a selection. Thisrestriction isimposed to prepare for possible
future extensions.

Peer-to-Peer Communica
tion by Means of Selections

owner: WINDOW

selection: ATOM

selection: ATOM

target: ATOM

property: ATOM or None

reguestor: WINDOW

time: TIMESTAMP or Cur r ent Ti e

The specified owner and selection will be the values that were specified in the Set Sel ect i onOaner

request. The owner should compare thetimestamp with the period it has owned the selection and, if thetime
isoutside, refuse the Sel ect i onRequest by sending the requestor window a Sel ect i onNoti fy
event with the property set to None (by means of a SendEvent reguest with an empty event mask).

More advanced selection owners are free to maintain a history of the value of the selection and to respond
to requests for the value of the selection during periods they owned it even though they do not own it now.

If the specified property is None, the requestor is an obsolete client. Owners are encouraged to support
these clients by using the specified target atom as the property name to be used for the reply.

Otherwise, the owner should use the target to decide the form into which the selection should be converted.
Some targets may be defined such that requestors can pass parameters along with the request. The owner
will find these parametersin the property named in the selection request. The type, format, and contents of
this property are dependent upon the definition of thetarget. If thetarget is not defined to have parameters,
the owner should ignore the property if it is present. If the selection cannot be converted into aform based
on the target (and parameters, if any), the owner should refuse the Sel ect i onRequest aspreviousy
described.

If the specified property is not None, the owner should place the data resulting from converting the se-
lection into the specified property on the requestor window and should set the property's type to some
appropriate value, which need not be the same as the specified target.

Convention

All properties used to reply to Sel ect i onRequest events must be placed on the
requestor window.

In either case, if the data comprising the sel ection cannot be stored on the requestor window (for example,
because the server cannot provide sufficient memory), the owner must refusethe Sel ect i onRequest
as previously described. See also Large Data Transfers.

If the property is successfully stored, the owner should acknowledge the successful conversion by sending
the requestor window a Sel ect i onNot i fy event (by means of aSendEvent request with an empty
mask). Sel ecti onNot i fy isdefined asfollows:

Sel ectionNotify

reguestor: WINDOW

selection, target: ATOM

property: ATOM or None

time: TIMESTAMP or Cur rent Ti e

Peer-to-Peer Communica
tion by Means of Selections

The owner should set the specified selection, target, time, and property arguments to the values received
inthe Sel ect i onRequest event. (Note that setting the property argument to None indicates that the
conversion requested could not be made.)

Convention

The selection, target, time, and property argumentsin the Sel ect i onNot i fy event
should be set to the values received in the Sel ect i onRequest event.

If the owner receives more than one Sel ect i onRequest event with the same requestor, selection,
target, and timestamp it must respond to them in the same order in which they were received.

Rationale

It is possible for a requestor to have multiple outstanding requests that use the same
requestor window, selection, target, and timestamp, and that differ only in the property.
If this occurs, and one of the conversion requests fails, the resulting Sel ect i onNo-

ti fy eventwill haveits property argument set to None. This may make it impossible
for the requestor to determine which conversion request had failed, unless the requests
are responded to in order.

The data stored in the property must eventually be deleted. A convention is needed to assign the respon-
sibility for doing so.

Convention

Selection requestors are responsible for deleting properties whose names they receive
inSel ecti onNot i fy events(See Requesting a Selection) or in propertieswith type
MULTIPLE.

A selection owner will often need confirmation that the data comprising the selection has actually been
transferred. (For example, if the operation has side effects on the owner's internal data structures, these
should not take place until the requestor has indicated that it has successfully received the data.) Owners
should expressinterestin Pr oper t yNot i f y eventsfor the specified requestor window and wait until the
property inthe Sel ecti onNot i fy event has been deleted before assuming that the selection data has
been transferred. For the MULTIPLE request, if the different conversions require separate confirmation,
the selection owner can also watch for the deletion of the individual properties named in the property in
theSel ecti onNoti fy event.

When some other client acquires a selection, the previous owner receives a Sel ecti onC ear event,
which is defined as follows:

Sel ecti onCl ear

owner: WINDOW
selection: ATOM
time: TIMESTAMP

The timestamp argument is the time at which the ownership changed hands, and the owner argument is
the window the previous owner specified inits Set Sel ect i onOaner request.

If an owner loses ownership while it has atransfer in progress (that is, before it receives notification that
the requestor hasreceived al the data), it must continue to service the ongoing transfer until it is compl ete.

If the selection value completely changes, but the owner happens to be the same client (for example,
selecting a totally different piece of text in the same xt er mas before), then the client should reacquire

Peer-to-Peer Communica
tion by Means of Selections

the selection ownership asiif it were not the owner, providing a new timestamp. If the selection value is
modified, but can still reasonably be viewed asthe same sel ected object, 2 the owner should take no action.

Giving Up Selection Ownership

Clients may either give up selection ownership voluntarily or lose it forcibly as the result of some other
client's actions.

Voluntarily Giving Up Selection Ownership

To relinquish ownership of a selection voluntarily, a client should execute a Set Sel ect i onOaner
request for that selection atom, with owner specified as None and the time specified as the timestamp that
was used to acquire the selection.

Alternatively, the client may destroy the window used as the owner value of the Set Sel ect i onOaner
request, or the client may terminate. In both cases, the ownership of the selection involved will revert to
None.

Forcibly Giving Up Selection Ownership

If aclient gives up ownership of a selection or if some other client executes a Set Sel ect i onOaner
for it and thus reassignsiit forcibly, the previous owner will receiveaSel ecti onCl ear event. For the
definition of aSel ect i onCl ear event, see Responsibilities of the Selection Owner

The timestamp is the time the selection changed hands. The specified owner is the window that was spec-
ified by the current owner in its Set Sel ect i onOmner request.

Requesting a Selection

A client that wishes to obtain the value of a selection in a particular form (the requestor) issues a Con-
vert Sel ecti on request, which is defined as follows:

Convert Sel ecti on

selection, target: ATOM

property: ATOM or None

requestor: WINDOW

time: TIMESTAMP or Cur r ent Ti e

The selection argument specifies the particular selection involved, and the target argument specifies the
required form of the information. For information about the choice of suitable atoms to use, see Use of
Selection Atoms Thereguestor should set the requestor argument to awindow that it created; the owner will
place the reply property there. The requestor should set the time argument to the timestamp on the event
that triggered the request for the selection value. Note that clients should not specify Cur r ent Ti nre.

Convention

Clients should not use Cur r ent Ti ne for the time argument of a Convert Sel ec-
t i on request. Instead, they should use the timestamp of the event that caused the re-
guest to be made.

2 The division between these two cases is a matter of judgment on the part of the software developer.

Peer-to-Peer Communica
tion by Means of Selections

The requestor should set the property argument to the name of a property that the owner can use to report
the value of the selection. Requestors should ensure that the named property does not exist on the window
beforeissuingtheConvert Sel ecti on requast.3 Theexceptionto thisruleiswhen therequestor intends
to pass parameters with the request (see below).

Rationale

Itis necessary for requestors to delete the property before issuing the request so that the
target can later be extended to take parameters without introducing an incompatibility.
Also notethat the requestor of asel ection need not know theclient that ownsthe selection
nor the window on which the selection was acquired.

Some targets may be defined such that requestors can pass parameters along with the request. If the re-
guestor wishes to provide parameters to a request, they should be placed in the specified property on the
requestor window beforethe requestor issuesthe Convert Sel ect i on reguest, and this property should
be named in the request.

Some targets may be defined so that parameters are optional. If no parameters are to be supplied with
the request of such atarget, the requestor must ensure that the property does not exist before issuing the
Convert Sel ecti on request.

The protocol allows the property field to be set to None, in which case the owner is supposed to choose
aproperty name. However, it is difficult for the owner to make this choice safely.

Conventions
» Requestors should not use None for the property argument of aConvert Sel ect i on request.

e Ownersreceiving Convert Sel ect i on requests with aproperty argument of None aretalking to an
obsolete client. They should choose the target atom as the property name to be used for the reply.

The result of the Convert Sel ecti on request isthat a Sel ecti onNot i fy event will be received.
For the definition of aSel ect i onNot i fy event, see Responsibilities of the Selection Owner.

The requestor, selection, time, and target arguments will be the same as those on the Convert Sel ec-
t i on request.

If the property argument is None, the conversion has been refused. This can mean either that thereis no
owner for the selection, that the owner does not support the conversion implied by the target, or that the
server did not have sufficient space to accommodate the data.

If the property argument is not None, then that property will exist on the requestor window. The value of
the selection can be retrieved from this property by using the Get Pr oper t y request, which is defined
asfollows:

Cet Property

window: WINDOW

property: ATOM

type: ATOM or AnyPr opertyType
long-offset, long-length: CARD32
delete: BOOL

3 This requirement isnew inversion 2.0, and, in general, existing clients do not conform to this requirement. To prevent these clients from breaking,
no existing targets should be extended to take parameters until sufficient time has passed for clientsto be updated. Note that the MUL TIPLE target
was defined to take parametersin version 1.0 and its definition is not changing. Thereis thus no conformance problem with MULTIPLE.

10

Peer-to-Peer Communica
tion by Means of Selections

->
type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTOfINT8 or LISTofINT16 or LISTofINT32

CGet Pr opert y toretrieve the value of aselection, the property argument should be set to the correspond-
ing valuein the Sel ect i onNot i fy event. Because the requestor has no way of knowing beforehand
what type the selection owner will use, the type argument should be set to AnyPr opert yType. Severa
CGet Pr oper t y requests may be needed to retrieve all the datain the selection; each should set the long-
offset argument to the amount of data received so far, and the size argument to some reasonable buffer
size (see Large Data Transfers.). If the returned value of bytes-after is zero, the whole property has been
transferred.

Once all the datain the selection has been retrieved (which may require getting the values of several prop-
erties -- see Use of Selection Properties.), the requestor should delete the property in the Sel ect i on-
Not i f y request by using aGet Pr oper t y request with the delete argument set to Tr ue. As previously
discussed, the owner has no way of knowing when the data has been transferred to the requestor unless
the property is removed.

Convention

The requestor must delete the property named in the Sel ecti onNot i fy once all
the data has been retrieved. The reguestor should invoke either Del et ePr operty
or Get Pr operty (delete==True) after it has successfully retrieved all the datain the
selection. For further information, see Large Data Transfers.

Large Data Transfers

Selections can get large, which poses two problems:
» Transferring large amounts of datato the server is expensive.

» All serverswill have limits on the amount of data that can be stored in properties. Exceeding this limit
will resultinan Al | oc error on the ChangePr oper t y request that the selection owner usesto store
the data.

The problem of limited server resources is addressed by the following conventions:
Conventions

» Selection owners should transfer the data describing a large selection (relative to the maximum-re-
quest-size they received in the connection handshake) using the INCR property mechanism (see INCR
Properties.).

* Any client using Set Sel ect i onOamner to acquire selection ownership should arrange to process
Al | oc errorsin property change requests. For clients using Xlib, this involves using the XSet Er -
r or Handl er function to override the default handler.

» A selectionowner must confirmthat no Al | oc error occurred while storing the propertiesfor aselection
before replying with aconfirming Sel ect i onNot i fy event.

» When storing large amounts of data (relative to maximum-request-size), clients should use a sequence
of ChangeProperty (node==Append) requests for reasonable quantities of data. This avoids
locking servers up and limits the waste of dataan Al | oc error would cause.

11

Peer-to-Peer Communica
tion by Means of Selections

e If an Al | oc error occurs during the storing of the selection data, all properties stored for this selection
should be deleted and the Conver t Sel ect i on request should be refused (see Responsihilities of
the Selection Owner.).

» To avoid locking servers up for inordinate lengths of time, requestors retrieving large quantities of
data from a property should perform a series of Get Pr oper t y requests, each asking for areasonable
amount of data.

Advice to Implementors

Single-threaded servers should take care to avoid locking up during large data transfers.

Use of Selection Atoms

Defining a new atom consumes resources in the server that are not released until the server reinitializes.
Thus, reducing the need for newly minted atoms is an important goal for the use of the selection atoms.

Selection Atoms

There can be an arbitrary number of selections, each named by an atom. To conform with the inter-client
conventions, however, clients need deal with only these three selections:

* PRIMARY
+ SECONDARY
* CLIPBOARD

Other selections may be used freely for private communication among related groups of clients.

The PRIMARY Selection

The selection named by the atom PRIMARY is used for all commands that take only a single argument
and is the principal means of communication between clients that use the selection mechanism.

The SECONDARY Selection

The selection named by the atom SECONDARY is used:

» Asthe second argument to commands taking two arguments (for example, "exchange primary and sec-
ondary selections")

» Asameans of obtaining data when there is a primary selection and the user does not want to disturb it

The CLIPBOARD Selection

The selection named by the atom CLIPBOARD is used to hold data that is being transferred between
clients, that is, data that usually is being cut and then pasted or copied and then pasted. Whenever a client
wants to transfer data to the clipboard:

* It should assert ownership of the CLIPBOARD.

« If it succeedsin acquiring ownership, it should be prepared to respond to arequest for the contents of the
CLIPBOARD inthe usual way (retaining the datato be ableto return it). The request may be generated
by the clipboard client described below.

12

Peer-to-Peer Communica
tion by Means of Selections

« If it failsto acquire ownership, a cutting client should not actually perform the cut or provide feedback
that would suggest that it has actually transferred data to the clipboard.

The owner should repeat this process whenever the data to be transferred would change.

Clientswanting to paste data from the clipboard should request the contents of the CLIPBOARD selection
in the usual way.

Except while a client is actually deleting or copying data, the owner of the CLIPBOARD selection may
be asingle, specia client implemented for the purpose. This client maintains the content of the clipboard
up-to-date and responds to requests for data from the clipboard as follows:

* It should assert ownership of the CLIPBOARD selection and reassert it any time the clipboard data
changes.

* If it loses the sel ection (because another client has some new data for the clipboard), it should:

» Obtain the contents of the selection from the new owner by using thetimestamp inthe Sel ect i on-
Cl ear event.

« Attempt to reassert ownership of the CLIPBOARD selection by using the same timestamp.

» Restart the process using a newly acquired timestamp if this attempt fails. This timestamp should be
obtained by asking the current owner of the CLIPBOARD selection to convert ittoa TIMESTAMP.
If this conversion is refused or if the same timestamp is received twice, the clipboard client should
acquire afresh timestamp in the usual way (for example by a zero-length append to a property).

* It should respond to requests for the CLIPBOARD contentsin the usual way.

A special CLIPBOARD client is not necessary. The protocol used by the cutting client and the pasting
client is the same whether the CLIPBOARD client is running or not. The reasons for running the special
client include:

« Stability - If the cutting client were to crash or terminate, the clipboard value would still be available.
* Feedback - The clipboard client can display the contents of the clipboard.

» Simplicity - A client deleting data does not have to retain it for so long, thus reducing the chance of
race conditions causing problems.

The reasons not to run the clipboard client include:

» Performance - Dataistransferred only if it isactually required (that is, when some client actually wants
the data).

* Flexibility - The clipboard data may be available as more than one target.

Target Atoms

The atom that a requestor supplies as the target of aConvert Sel ect i on request determines the form
of the data supplied. The set of such atomsis extensible, but a generally accepted base set of target atoms
is needed. As astarting point for this, the following table contains those that have been suggested so far.

Atom Type Data Received
ADOBE_PORTABLE_DOCU- STRING [1]
MENT_FORMAT

APPLE_PICT APPLE_PICT [2]

13

Peer-to-Peer Communica
tion by Means of Selections

Atom Type Data Received

BACKGROUND PIXEL A list of pixel values

BITMAP BITMAP A list of bitmap IDs

CHARACTER_POSITION SPAN The start and end of the selection in
bytes

CLASS TEXT (see WM_CLASS Property.)

CLIENT_WINDOW WINDOW Any top-level window owned by the
selection owner

COLORMAP COLORMAP A list of colormap IDs

COLUMN_NUMBER SPAN The start and end column numbers

COMPOUND_TEXT COMPOUND_TEXT Compound Text

DELETE NULL (see DELETE.)

DRAWABLE DRAWABLE A list of drawable IDs

ENCAPSULATED_POSTSCRIPT STRING [3], Appendix H @

ENCAPSULATED_POSTSCRIPT_- STRING [3], Appendix H

INTERCHANGE

FILE_NAME TEXT The full path name of afile

FOREGROUND PIXEL A list of pixel values

HOST_NAME TEXT (see WM_CLIENT_MACHINE
Property.)

INSERT_PROPERTY NULL (see INSERT_PROPERTY .)

INSERT_SELECTION NULL (see INSERT_SELECTION.)

LENGTH INTEGER The number of bytesin the selection b

LINE_ NUMBER SPAN The start and end line numbers

LIST LENGTH INTEGER The number of disjoint parts of the
selection

MODULE TEXT The name of the selected procedure

MULTIPLE ATOM_PAIR (see the discussion that follows)

NAME TEXT (see WM_NAME Property.)

ODIF TEXT I SO Office Document I nterchange
Format

OWNER_OS TEXT The operating system of the owner
client

PIXMAP PIXMAP€ A list of pixmap IDs

POSTSCRIPT STRING [3]

PROCEDURE TEXT The name of the selected procedure

PROCESS INTEGER, TEXT The process D of the owner

STRING STRING ISO Latin-1 (+TAB+NEWLINE) text

TARGETS ATOM A list of valid target atoms

TASK INTEGER, TEXT The task ID of the owner

TEXT TEXT The text in the owner's choice of en-

coding

14

Peer-to-Peer Communica
tion by Means of Selections

Atom Type Data Received

TIMESTAMP INTEGER The timestamp used to acquire the se-
lection

USER TEXT The name of the user running the
owner

& Earlier versions of this document erroneously specified that conversion of the PIXMAP target returns a property of type DRAW-
ABLE instead of PIXMAP. Implementors should be aware of this and may want to support the DRAWABLE type as well to alow
for compatibility with older clients.

b The targets ENCAPSULATED_POSTSCRIPT and ENCAPSULATED_POSTSCRIPT_INTERCHANGE are equivalent to the
targets _ADOBE_EPS and _ADOBE_EPS| (respectively) that appear in the selection targets registry. The _ADOBE_ targets are
deprecated, but clients are encouraged to continue to support them for backward compatibility.

€ This definition is ambiguous, as the selection may be converted into any of several targets that may return differing amounts of
data. The requestor has no way of knowing which, if any, of these targets corresponds to the result of LENGTH. Clients are advised
that no guarantees can be made about the result of aconversion to LENGTH; its use is thus deprecated.

References:

1. Adobe Systems, Incorporated. Portable Document Format Reference Manual. Reading, MA, Addi-
son-Wesley, ISBN 0-201-62628-4.

2. Apple Computer, Incorporated. Inside Macintosh, Volume V. Chapter 4, "Color QuickDraw," Color
Picture Format. ISBN 0-201-17719-6.

3. Adobe Systems, Incorporated. PostScript Language Reference Manual. Reading, MA, Addison-Wes-
ley, ISBN 0-201-18127-4.

It is expected that this table will grow over time.
Selection owners are required to support the following targets. All other targets are optional.

» TARGETS - The owner should return alist of atoms that represent the targets for which an attempt to
convert the current selection will succeed (barring unforseeable problems such as Al | oc errors). This
list should include al the required atoms.

* MULTIPLE- The MULTIPLE target atomisvalid only when aproperty is specified onthe Convert -
Sel ect i on request. If the property argument in the Sel ect i onRequest event is None and the
target isMULTIPLE, it should be refused.

When a selection owner receives a Sel ect i onRequest (target ==MJLTI PLE) request, the
contents of the property named in the request will be alist of atom pairs:. the first atom naming a target
and the second naming a property (None isnot valid here). The effect should be asif the owner had
received asequence of Sel ect i onRequest events (one for each atom pair) except that:

e The owner should reply witha Sel ect i onNot i fy only when all the requested conversions have
been performed.

« |If theowner failsto convert thetarget named by an atominthe MULTIPLE property, it should replace
that atom in the property with None.

Convention

The entriesin a MULTIPLE property must be processed in the order they appear in
the property. For further information, see Selection Targets with Side Effects.

The requestor should delete each individual property when it has copied the data from that conversion,
and the property specified in the MULTIPLE request when it has copied all the data.

15

Peer-to-Peer Communica
tion by Means of Selections

Therequests are otherwise to be processed independently, and they should succeed or fail independently.
The MULTIPLE target is an optimization that reduces the amount of protocol traffic between the owner
and the requestor; it is not a transaction mechanism. For example, a client may issue a MULTIPLE
request with two targets: adatatarget and the DELETE target. The DELETE target will still be processed
even if the conversion of the datatarget fails.

» TIMESTAMP - To avoid some race conditions, it is important that requestors be able to discover the
timestamp the owner used to acquire ownership. Until and unless the protocal is changed so that a
Get Sel ecti onOaner request returns the timestamp used to acquire ownership, selection owners
must support conversion to TIMESTAMP, returning the timestamp they used to obtain the selection.

Selection Targets with Side Effects

Some targets (for example, DELETE) have side effects. To render these targets unambiguous, the entries
inaMULTIPLE property must be processed in the order that they appear in the property.

In general, targetswith side effectswill return noinformation, that is, they will return azero length property
of type NULL. (Type NULL meanstheresult of | nt er nAt omon thestring "NULL", not the value zero.)
Inall cases, the requested side effect must be performed before the conversion is accepted. If the requested
side effect cannot be performed, the corresponding conversion request must be refused.

Conventions

» Targets with side effects should return no information (that is, they should have a
zero-length property of type NULL).

» The side effect of atarget must be performed before the conversion is accepted.

« If thesideeffect of atarget cannot be performed, the corresponding conversion request
must be refused.

Problem

The need to delay responding to the Convert Sel ect i on request until afurther con-
version has succeeded poses problems for the Intrinsics interface that need to be ad-
dressed.

These side-effect targets are used to implement operations such as "exchange PRIMARY and SEC-
ONDARY selections.”

DELETE

When the owner of aselection receivesarequest to convert it to DELETE, it should delete the correspond-
ing selection (whatever doing so means for its internal data structures) and return a zero-length property
of type NULL if the deletion was successful.

INSERT_SELECTION

When the owner of a selection receives a request to convert it to INSERT_SEL ECTION, the property
named will be of type ATOM_PAIR. The first atom will name a selection, and the second will name a
target. The owner should use the sel ection mechanism to convert the named selection into the named target
and should insert it at the location of the selection for which it got the INSERT_SELECTION request
(whatever doing so means for itsinternal data structures).

16

Peer-to-Peer Communica
tion by Means of Selections

INSERT_PROPERTY

When the owner of aselection receivesarequest to convert it to INSERT_PROPERTY, it should insert the
property named in the request at the location of the selection for which it got the INSERT_SELECTION
request (whatever doing so means for itsinternal data structures).

Use of Selection Properties

The names of the properties used in selection data transfer are chosen by the requestor. The use of None
property fieldsin Convert Sel ect i on requests (which request the selection owner to choose a name)
is not permitted by these conventions.

The selection owner always chooses the type of the property in the selection data transfer. Some types
have special semantics assigned by convention, and these are reviewed in the following sections.

Inall cases, arequest for conversion to atarget should return either a property of one of the typeslistedin
the previous table for that target or aproperty of type INCR and then a property of one of the listed types.

Certain selection properties may contain resource | Ds. The selection owner should ensure that the resource
is not destroyed and that its contents are not changed until after the selection transfer is complete. Re-
guestors that rely on the existence or on the proper contents of a resource must operate on the resource
(for example, by copying the contents of a pixmap) before deleting the selection property.

The selection owner will return alist of zero or more items of the type indicated by the property type. In
general, the number of items in the list will correspond to the number of digoint parts of the selection.
Some targets (for example, side-effect targets) will be of length zero irrespective of the number of digjoint
selection parts. In the case of fixed-size items, the requestor may determine the number of items by the
property size. Selection property types are listed in the table below. For variable-length items such as text,
the separators are also listed.

Type Atom Format Separator
APPLE PICT 8 Self-sizing
ATOM 32 Fixed-size
ATOM_PAIR 32 Fixed-size
BITMAP 32 Fixed-size
C_STRING 8 Zero

COLORMAP 32 Fixed-size
COMPOUND_TEXT 8 Zero

DRAWABLE 32 Fixed-size
INCR 32 Fixed-size
INTEGER 32 Fixed-size
PIXEL 32 Fixed-size
PIXMAP 32 Fixed-size
SPAN 32 Fixed-size
STRING 8 Zero

WINDOW 32 Fixed-size

It is expected that this table will grow over time.

17

Peer-to-Peer Communica
tion by Means of Selections

TEXT Properties

INCR

In general, the encoding for the characters in a text string property is specified by its type. It is highly
desirable for there to be a simple, invertible mapping between string property types and any character set
names embedded within font names in any font naming standard adopted by the Consortium.

The atom TEXT is a polymorphic target. Requesting conversion into TEXT will convert into whatever
encoding is convenient for the owner. The encoding chosen will be indicated by the type of the property
returned. TEXT is not defined as a type; it will never be the returned type from a selection conversion
request.

If the requestor wants the owner to return the contents of the selection in a specific encoding, it should
request conversion into the name of that encoding.

Inthetablein Target Atoms, theword TEXT (in the Type column) is used to indicate one of the registered
encoding names. Thetypewould not actually be TEXT; it would be STRING or some other ATOM naming
the encoding chosen by the owner.

STRING as a type or a target specifies the ISO Latin-1 character set plus the control characters TAB
(octal 11) and NEWLINE (octal 12). The spacing interpretation of TAB iscontext dependent. Other ASCI|
control characters are explicitly not included in STRING at the present time.

COMPOUND_TEXT asatype or atarget specifies the Compound Text interchange format; see the Com-
pound Text Encoding.

There are some text objects where the source or intended user, as the case may be, does not have a specific
character set for the text, but instead merely requires a zero-terminated sequence of bytes with no other
restriction; no element of the selection mechanism may assume that any byte value is forbidden or that
any two differing sequences are equivalent. 4 For these objects, the type C_STRING should be used.

Rationale

An exampleof theneed for C_STRING isto transmit the names of files; many operating
systems do not interpret filenames as having a character set. For example, the same
character string uses a different sequence of bytesin ASCII and EBCDIC, and so most
operating systems see these as different filenames and offer no way to treat them asthe
same. Thus no character-set based property typeis suitable.

Type STRING, COMPOUND_TEXT, and C_STRING properties will consist of alist of e ements sepa-
rated by null characters; other encodings will need to specify an appropriate list format.

Properties

Reguestors may receive a property of type INCR ° in response to any target that resultsin selection data.

This indicates that the owner will send the actual dataincrementally. The contents of the INCR property
will be an integer, which represents a lower bound on the number of bytes of data in the selection. The
requestor and the selection owner transfer the data in the selection in the following manner.

The selection requestor starts the transfer process by deleting the (type==INCR) property forming the
reply to the selection.

4 Note that thisis different from STRING, where many byte values are forbidden, and from COMPOUND_TEXT, where, for example, inserting
the sequence 27,\ 40,\ 66 (designate ASCI| into GL) at the start does not alter the meaning.

5 These properties were called INCREMENTAL in an earlier draft. The protocol for using them has changed, and so the name has changed to
avoid confusion.

18

Peer-to-Peer Communica
tion by Means of Selections

The selection owner then:

» Appendsthe datain suitable-size chunksto the same property on the same window asthe selection reply
with atype corresponding to the actual type of the converted selection. The size should be |ess than the
maximum-request-size in the connection handshake.

» Waits between each append for a Pr opert yNot i fy (state==Deleted) event that shows that the re-
guestor has read the data. The reason for doing thisis to limit the consumption of space in the server.

» Waits (after the entire data has been transferred to the server) until a PropertyNotify
(state==Deleted) event that shows that the data has been read by the requestor and then writes ze-
ro-length data to the property.

The selection requestor:
» Waitsfor the Sel ecti onNoti fy event.
* Loops:
* Retrieving data using Get Pr oper t y with the delete argument Tr ue.
e Waiting for aPr oper t yNot i f y with the state argument Newval ue.
» Waits until the property named by the Pr opert yNot i f y event is zero-length.
 Deletes the zero-length property.

Thetype of the converted selection isthe type of thefirst partial property. The remaining partial properties
must have the same type.

DRAWABLE Properties

Requestors may receive properties of type PIXMAP, BITMAP, DRAWABLE, or WINDOW, which con-
tain an appropriate ID. While information about these drawables is available from the server by means of
the Get Geonret r y request, the following items are not:

* Foreground pixel

» Background pixel

» Colormap ID

In general, requestors converting into targets whose returned type in the table in Target Atomsis one of
the DRAWABLE types should expect to convert also into the following targets (using the MULTIPLE
mechanism):

» FOREGROUND returns a PIXEL value.

» BACKGROUND returnsa PIXEL vaue.

* COLORMAP returns acolormap ID.

SPAN Properties

Properties with type SPAN contain alist of cardinal-pairs with the length of the cardinals determined by
the format. The first specifies the starting position, and the second specifies the ending position plus one.

19

Peer-to-Peer Communica
tion by Means of Selections

Thebaseiszero. If they are the same, the span is zero-length and is before the specified position. The units
areimplied by the target atom, such as LINE_NUMBER or CHARACTER_POSITION.

Manager Selections

Certain clients, often called managers, take on responsibility for managing shared resources. A client that
manages a shared resource should take ownership of an appropriate selection, named using the conven-
tions described in Naming Conventions and Discriminated Names. A client that manages multiple shared
resources (or groups of resources) should take ownership of a selection for each one.

The manager may support conversion of varioustargets for that selection. Managers are encouraged to use
this technique as the primary means by which clients interact with the managed resource. Note that the
conventions for interacting with the window manager predate this section; as a result many interactions
with the window manager use other techniques.

Before a manager takes ownership of a manager selection, it should use the Get Sel ecti onOaner

request to check whether the selection isalready owned by another client, and, where appropriate, it should
ask theuser if the new manager should replacethe old one. If so, it may then take ownership of the sel ection.
Managers should acquire the selection using awindow created expressly for this purpose. Managers must
conform to the rulesfor selection ownersdescribed in Acquiring Selection Ownership and Responsibilities
of the Selection Owner , and they must also support the required targets listed in Use of Selection Atoms.

If a manager loses ownership of a manager selection, this means that a new manager is taking over its
responsibilities. The old manager must release all resources it has managed and must then destroy the
window that owned the selection. For example, a window manager losing ownership of WM_S2 must
deselect from Subst r uct ur eRedi r ect ontheroot window of screen 2 before destroying the window
that owned WM_S2.

When the new manager notices that the window owning the selection has been destroyed, it knows that it
can successfully proceed to control the resourceit is planning to manage. If the old manager does not de-
stroy the window within areasonable time, the new manager should check with the user before destroying
the window itself or killing the old manager.

If a manager wants to give up, on its own, management of a shared resource controlled by a selection, it
must do so by releasing the resources it is managing and then by destroying the window that owns the
selection. It should not first disown the selection, since this introduces a race condition.

Clients who are interested in knowing when the owner of a manager selection is no longer managing the
corresponding shared resource should select for St r uct ur eNot i f y on the window owning the selec-
tion so they can be notified when the window is destroyed. Clients are warned that after doing a Get S-

el ecti onOwner and selecting for St ruct ur eNot i f y, they should do a Get Sel ecti onOaner

again to ensure that the owner did not change after initially getting the selection owner and before selecting
for StructureNotify.

Immediately after amanager successfully acquires ownership of a manager selection, it should announce
itsarrival by sendingad i ent Message event. This event should be sent using the SendEvent pro-
tocol request with the following arguments:

Argument Value

destination: the root window of screen O, or the root window of the appropriate screen if
the manager is managing a screen-specific resource

propogate: False

event-mask: StructureNotify

20

Peer-to-Peer Communica
tion by Means of Selections

Argument Value
event: d i ent Message
type: MANAGER
format: 32
data[0] & timestamp
data[1]: manager selection atom
data[2]: the window owning the selection
data[3]: manager-sel ection-specific data
data[4]: manager-sel ection-specific data

3 \We use the notation data[n] to indicate the n " element of the LISTofINT8, LISTOfINT16, or LISTofINT32 in the datafield of the
Cl i ent Message, according to the format field. Thelist isindexed from zero.

Clients that wish to know when a specific manager has started should select for St r uct ur eNot i fy on
the appropriate root window and should watch for the appropriate MANAGER Cl i ent Message.

21

Chapter 3. Peer-to-Peer
Communication by Means of Cut
Buffers

The cut buffer mechanism is much simpler but much less powerful than the selection mechanism. The
selection mechanism is active in that it provides a link between the owner and requestor clients. The cut
buffer mechanism is passive; an owner places data in a cut buffer from which a requestor retrieves the
data at some later time.

The cut buffers consist of eight properties on the root of screen zero, named by the predefined atoms
CUT_BUFFERO to CUT_BUFFERY. These properties must, at present, have type STRING and format
8. A client that uses the cut buffer mechanism must initially ensure that all eight properties exist by using
ChangePr oper t y requests to append zero-length data to each.

A client that stores data in the cut buffers (an owner) first must rotate the ring of buffers by plus 1 by us-
ing Rot at ePr oper ti es requeststo rename each buffer; that is, CUT_BUFFERO to CUT_BUFFER1,
CUT_BUFFER1 to CUT_BUFFER?2, ..., and CUT_BUFFER7 to CUT_BUFFERQO. It then must store the
datainto CUT_BUFFERO by using aChangePr oper t y request in mode Repl ace.

A client that obtains datafrom the cut buffers should useaGet Pr oper t y request to retrieve the contents
of CUT_BUFFERQO.

In response to a specific user request, a client may rotate the cut buffers by minus 1 by using Ro-
t at eProperti es regquests to rename each buffer; that is, CUT_BUFFER7 to CUT_BUFFERS,
CUT_BUFFER6 to CUT_BUFFERS, ..., and CUT_BUFFERO to CUT_BUFFER?.

Data should be stored to the cut buffers and the ring rotated only when requested by explicit user action.
Users depend on their mental model of cut buffer operation and need to be able to identify operations that
transfer datato and fro.

22

Chapter 4. Client-to-Window-Manager
Communication

To permit window managersto perform their role of mediating the competing demands for resources such
as screen space, the clients being managed must adhereto certain conventions and must expect the window
managers to do likewise. These conventions are covered here from the client's point of view.

In general, these conventions are somewhat complex and will undoubtedly change as new window man-
agement paradigms are developed. Thus, there is a strong bias toward defining only those conventions
that are essential and that apply generally to all window management paradigms. Clients designed to run
with aparticular window manager can easily define private protocolsto add to these conventions, but they
must be aware that their users may decide to run some other window manager no matter how much the
designers of the private protocol are convinced that they have seen the "one true light" of user interfaces.

It is a principle of these conventions that a general client should neither know nor care which window
manager isrunning or, indeed, if oneisrunning at al. The conventions do not support al client functions
without awindow manager running; for example, the concept of Iconicis not directly supported by clients.
If no window manager is running, the concept of Iconic does not apply. A goal of the conventions is to
make it possible to kill and restart window managers without loss of functionality.

Each window manager will implement a particular window management policy; the choice of an appro-
priate window management policy for the user's circumstances is not one for an individual client to make
but will be made by the user or the user's system administrator. This does not exclude the possibility of
writing clients that use a private protocol to restrict themselves to operating only under a specific window
manager. Rather, it merely ensures that no claim of general utility is made for such programs.

For example, the claim is often made: "The client I'm writing is important, and it needs to be on top."
Perhaps it is important when it is being run in earnest, and it should then be run under the control of a
window manager that recognizes "important” windows through some private protocol and ensures that
they are on top. However, imagine, for example, that the "important" client is being debugged. Then,
ensuring that it is always on top is no longer the appropriate window management policy, and it should be
run under awindow manager that allows other windows (for example, the debugger) to appear on top.

Client's Actions

In general, the object of the X Version 11 design isthat clients should, as far as possible, do exactly what
they would do in the absence of awindow manager, except for the following:

« Hinting to the window manager about the resources they would like to obtain

» Cooperating with the window manager by accepting the resources they are allocated even if they are
not those requested

» Being prepared for resource allocations to change at any time

Creating a Top-Level Window

A client's top-level window is a window whose override-redirect attribute is Fal se. It must either be a
child of aroot window, or it must have been a child of aroot window immediately prior to having been
reparented by the window manager. If the client reparents the window away from the root, the window is
no longer a top-level window; but it can become atop-level window again if the client reparents it back
to the root.

23

Client-to-Window-Man-
ager Communication

A client usually would expect to createitstop-level windowsaschildren of one or more of the root windows
by using some boilerplate like the following:

wi n = XCreat eSi nmpl eW ndow(dpy, Defaul t Root W ndow(dpy), xsh.x, xsh.y,
xsh. wi dth, xsh.height, bw, bd, bg);

If aparticular one of the root windows was required, however, it could use something like the following:

wi n = XCreat eSi nmpl eW ndow(dpy, Root W ndow(dpy, screen), xsh.x, xsh.y,
xsh. wi dth, xsh.height, bw, bd, bg);

Ideally, it should be possible to override the choice of aroot window and allow clients (including window
managers) to treat a nonroot window as a pseudo-root. This would allow, for example, the testing of
window managers and the use of application-specific window managersto control the subwindows owned
by the members of arelated suite of clients. Doing so properly requires an extension, the design of which
isunder study.

From the client's point of view, the window manager will regard its top-level window as being in one of
three states:

e Normal
* |conic
e Withdrawn

Newly created windows start in the Withdrawn state. Transitions between states happen when the top-
level window is mapped and unmapped and when the window manager receives certain messages. For
further details, see WM_HINTS Property. and Changing Window State.

Client Properties

Oncethe client has one or more top-level windows, it should place properties on those windowsto inform
the window manager of the behavior that the client desires. Window managers will assume values they
find convenient for any of these properties that are not supplied; clients that depend on particular values
must explicitly supply them. The window manager will not change properties written by the client.

The window manager will examine the contents of these properties when the window makes the transition
from the Withdrawn state and will monitor some propertiesfor changeswhilethewindow isinthelconic or
Normal state. When the client changes one of these properties, it must use Repl ace modeto overwritethe
entire property with new data; the window manager will retain no memory of the old value of the property.
All fields of the property must be set to suitable valuesin asingle Repl ace mode ChangePr operty
request. This ensures that the full contents of the property will be available to a new window manager
if the existing one crashes, if it is shut down and restarted, or if the session needs to be shut down and
restarted by the session manager.

Convention

Clientswriting or rewriting window manager properties must ensure that the entire con-
tent of each property remains valid at all times.

Some of these properties may contain the IDs of resources, such as windows or pixmaps. Clients should
ensure that these resources exist for at least as long as the window on which the property resides.

24

Client-to-Window-Man-
ager Communication

If these properties are longer than expected, clients should ignore the remainder of the property. Extending
these propertiesis reserved to the X Consortium; private extensions to them are forbidden. Private addi-
tional communication between clients and window managers should take place using separate properties.
The only exception to thisrule isthe WM_PROTOCOLS property, which may be of arbitrary length and
which may contain atoms representing private protocols (see WM_PROTOCOLS Property).

The next sections describe each of the properties the clients need to set, in turn. They are summarized in
the table in Summary of Window Manager Property Types

WM_NAME Property

The WM_NAME property is an uninterpreted string that the client wants the window manager to display
in association with the window (for example, in awindow headline bar).

The encoding used for this string (and all other uninterpreted string properties) isimplied by the type of
the property. The type atoms to be used for this purpose are described in TEXT Properties.

Window managers are expected to make an effort to display this information. Simply ignoring
WM_NAME is not acceptable behavior. Clients can assume that at least the first part of this string is
visible to the user and that if the information is not visible to the user, it is because the user has taken an
explicit action to make it invisible.

On the other hand, there is no guarantee that the user can see the WM_NAME string even if the window
manager supports window headlines. The user may have placed the headline off-screen or have covered
it by other windows. WM_NAME should not be used for application-critical information or to announce
asynchronous changes of an application's state that require timely user response. The expected uses are to
permit the user to identify one of a number of instances of the same client and to provide the user with
noncritical state information.

Even window managers that support headline bars will place some limit on the length of the WM_NAME
string that can be visible; brevity here will pay dividends.

WM _ICON_NAME Property

The WM_ICON_NAME property is an uninterpreted string that the client wants to be displayed in asso-
ciation with the window when it isiconified (for example, in an icon label). In other respects, including
the type, it is similar to WM_NAME. For obvious geometric reasons, fewer characters will normally be
visiblein WM_ICON_NAME than WM_NAME.

Clients should not attempt to display this string in their icon pixmaps or windows; rather, they should rely
on the window manager to do so.

WM_NORMAL_HINTS Property

The type of the WM_NORMAL_HINTS property isWM_SIZE_HINTS. Its contents are as follows:

Field Type Comments

flags CARD32 (see the next table)

pad 4*CARD32 For backwards compatibility
min_width INT32 If missing, assume base width
min_height INT32 If missing, assume base_height
max_width INT32

max_height INT32

25

Client-to-Window-Man-
ager Communication

Field Type Comments

width_inc INT32

height_inc INT32

min_aspect (INT32,INT32)

max_aspect (INT32,INT32)

base width INT32 If missing, assume min_width
base height INT32 If missing, assume min_height
win_gravity INT32 If missing, assume Nor t hW\est

The WM_SIZE _HINTS.flags bit definitions are as follows:

Name Value Field

USPosi tion 1 User-specified X, y

USSi ze 2 User-specified width, height

PPosi tion 4 Program-specified position

PSi ze 8 Program-specified size

PM nSi ze 16 Program-specified minimum size
PMaxSi ze 32 Program-specified maximum size
PResi zel nc 64 Program-specified resize increments
PAspect 128 Program-specified min and max aspect ratios
PBaseSi ze 256 Program-specified base size

PW nG avity 512 Program-specified window gravity

To indicate that the size and position of the window (when atransition from the Withdrawn state occurs)
was specified by the user, the client should set the USPosi ti on and USSi ze flags, which allow a
window manager to know that the user specifically asked where the window should be placed or how the
window should be sized and that further interaction is superfluous. To indicate that it was specified by the
client without any user involvement, the client should set PPosi t i on and PSi ze.

The size specifiers refer to the width and height of the client's window excluding borders.

The win_gravity may be any of the values specified for WINGRAVITY in the core protocol except for
Unmap: Nor t hWest (1), Nort h (2), Nor t hEast (3), West (4), Cent er (5), East (6), Sout hWest
(7), Sout h (8), and Sout hEast (9). It specifies how and whether the client window wants to be shifted
to make room for the window manager frame.

If the win_gravity is St at i ¢, the window manager frame is positioned so that the inside border of the
client window inside the frame is in the same position on the screen as it was when the client requested
the transition from Withdrawn state. Other values of win_gravity specify a window reference point. For
Nor t hWest , Nor t hEast , Sout hWest , and Sout hEast the reference point is the specified outer
corner of the window (on the outside border edge). For Nor t h, Sout h, East and West the reference
point is the center of the specified outer edge of the window border. For Cent er the reference point is
the center of the window. The reference point of the window manager frame is placed at the location on
the screen where the reference point of the client window was when the client requested the transition
from Withdrawn state.

The min_width and min_height elements specify the minimum size that the window can be for the client
to be useful. The max_width and max_height elements specify the maximum size. The base width and

26

Client-to-Window-Man-
ager Communication

base height elements in conjunction with width_inc and height_inc define an arithmetic progression of
preferred window widths and heights for non-negative integersi and j:

width = base width + (i x width_inc)
hei ght = base_height + (j x height _inc)

Window managers are encouraged to usei and j instead of width and height in reporting window sizes to
users. If abase sizeis not provided, the minimum size isto be used in its place and vice versa.

The min_aspect and max_aspect fields are fractions with the numerator first and the denominator second,
and they allow aclient to specify the range of aspect ratiosit prefers. Window managers that honor aspect
ratios should take into account the base size in determining the preferred window size. If a base size is
provided along with the aspect ratio fields, the base size should be subtracted from the window size prior
to checking that the aspect ratio fallsin range. If a base size is not provided, nothing should be subtracted
from the window size. (The minimum size is not to be used in place of the base size for this purpose.)

WM_HINTS Property

The WM_HINTS property (whose type is WM_HINTS) is used to communicate to the window
manager. It conveys the information the window manager needs other than the window geometry,
which is available from the window itself; the constraints on that geometry, which is available from
the WM_NORMAL_HINTS structure; and various strings, which need separate properties, such as
WM_NAME. The contents of the properties are as follows:

Field Type Comments

flags CARD32 (see the next table)

input CARD32 The client's input model
initial_state CARD32 The state when first mapped
icon_pixmap PIXMAP The pixmap for the icon image
icon_window WINDOW The window for the icon image
icon_x INT32 Theicon location

icon_y INT32

icon_mask PIXMAP The mask for the icon shape
window_group WINDOW The ID of the group leader window

The WM_HINTS flags bit definitions are as follows:

Name Value Field

I nput Hi nt 1 input

St at eHi nt 2 initial_state

| conPi xmapHi nt 4 icon_pixmap

| conW ndowHi nt 8 icon_window

| conPositionHi nt 16 icon x & icon_y

| conMaskHi nt 32 icon_mask

W ndowGr oupHi nt 64 window_group
MessageHi nt 128 (this bit is obsol ete)
Ur gencyHi nt 256 urgency

27

Client-to-Window-Man-
ager Communication

Window managers are free to assume convenient values for all fields of the WM_HINTS property if a
window is mapped without one.

The input field is used to communicate to the window manager the input focus model used by the client
(see Input Focus).

Clients with the Globally Active and No Input models should set the input flag to Fal se. Clients with
the Passive and Locally Active models should set the input flag to Tr ue.

From the client's point of view, the window manager will regard the client's top-level window as being
in one of three states:

e Normal
* |conic
* Withdrawn

The semantics of these states are described in Changing Window State. Newly created windows start inthe
Withdrawn state. Transitions between states happen when a top-level window is mapped and unmapped
and when the window manager receives certain messages.

The value of theinitial_state field determines the state the client wishes to be in at the time the top-level
window is mapped from the Withdrawn state, as shown in the following table:

State Value Comments
Normal State 1 The window isvisible
IconicState 3 Theiconisvisible

Theicon_pixmap field may specify a pixmap to be used as an icon. This pixmap should be;

» Oneof thesizesspecifiedintheWM_ICON_SIZE property ontheroot if it exists(seeWM_ICON_SIZE
Property).

 1-bit deep. The window manager will select, through the defaults database, suitable background (for
the 0 bits) and foreground (for the 1 bits) colors. These defaults can, of course, specify different colors
for the icons of different clients.

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon, allowing for icons
to appear nonrectangular.

Theicon_window field isthe ID of awindow the client wants used asitsicon. Most, but not all, window
managers will support icon windows. Those that do not are likely to have a user interface in which small
windows that behave like icons are completely inappropriate. Clients should not attempt to remedy the
omission by working around it.

Clients that need more capabilities from the icons than a simple 2-color bitmap should use icon windows.
Rulesfor clients that do are set out in Icons.

The (icon_x,icon_y) coordinate is a hint to the window manager as to where it should position the icon.
The policies of the window manager control the positioning of icons, so clients should not depend on
attention being paid to this hint.

The window_group field lets the client specify that this window belongs to a group of windows. An ex-
ample is asingle client manipulating multiple children of the root window.

28

Client-to-Window-Man-
ager Communication

Conventions

» The window_group field should be set to the ID of the group leader. The window
group leader may be awindow that exists only for that purpose; a placeholder group
leader of this kind would never be mapped either by the client or by the window
manager.

» The properties of the window group leader are those for the group as a whole (for
example, the icon to be shown when the entire group is iconified).

Window managers may provide facilities for manipulating the group as awhole. Clients, at present, have
no way to operate on the group as awhole.

The messages bit, if set in the flags field, indicates that the client is using an obsolete window manager
communication protocol, ! vather than the WM_PROTOCOL S mechanism of WM_PROTOCOLS Prop-
erty

The Ur gencyHi nt flag, if set in the flags field, indicates that the client deems the window contents to
be urgent, requiring the timely response of the user. The window manager must make some effort to draw
the user's attention to this window while this flag is set. The window manager must also monitor the state
of thisflag for the entire time the window isin the Normal or I conic state and must take appropriate action
when the state of the flag changes. The flag is otherwise independent of the window's state; in particular,
the window manager is not required to deiconify the window if the client setstheflag on an | conic window.
Clients must provide some means by which the user can cause the Ur gencyHi nt flag to be set to zero
or the window to be withdrawn. The user's action can either mitigate the actual condition that made the
window urgent, or it can merely shut off the alarm.

Rationale

This mechanism is useful for alarm dialog boxes or reminder windows, in cases where
mapping the window is not enough (e.g., in the presence of multi-workspace or virtua
desktop window managers), and where using an override-redirect window is too intru-
sive. For example, the window manager may attract attention to an urgent window by
adding anindicator toitstitle bar or itsicon. Window managers may also take additional
action for awindow that is newly urgent, such as by flashing itsicon (if the window is
iconic) or by raising it to the top of the stack.

WM_CLASS Property

The WM_CLASS property (of type STRING without control characters) contains two consecutive null-
terminated strings. These specify the Instance and Class namesto be used by both the client and the window
manager for looking up resources for the application or asidentifying information. This property must be
present when the window |eaves the Withdrawn state and may be changed only while the window isin
the Withdrawn state. Window managers may examine the property only when they start up and when the
window leavesthe Withdrawn state, but there should be no need for aclient to changeits statedynamically.

The two strings, respectively, are:

* A string that names the particular instance of the application to which the client that owns this window
belongs. Resources that are specified by instance name override any resourcesthat are specified by class
name. |nstance names can be specified by the user in an operating-system specific manner. On POSI X -
conformant systems, the following conventions are used:

1 This obsolete protocol was described in the July 27, 1988, draft of the ICCCM. Windows using it can also be detected because their WM_HINTS
properties are 4 bytes longer than expected. Window managers are free to support clients using the obsolete protocol in a backwards compatibility
mode.

29

Client-to-Window-Man-
ager Communication

e If "-name NAME" is given on the command line, NAME is used as the instance name.

¢ Otherwisg, if the environment variable RESOURCE_NAME is s, its value will be used as the in-
stance name.

» Otherwise, thetrailing part of the name used to invoke the program (argv[Q] stripped of any directory
names) is used as the instance name.

* A string that namesthe general class of applications to which the client that owns this window belongs.
Resourcesthat are specified by classapply to all applicationsthat have the same class name. Classnames
are specified by the application writer. Examples of commonly used class names include: "Emacs',
"XTerm", "XClock", "XLoad", and so on.

Note that WM_CLASS strings are null-terminated and, thus, differ from the genera conventions that
STRING properties are null-separated. This inconsistency is necessary for backwards compatibility.

WM_TRANSIENT_FOR Property

TheWM_TRANSIENT_FOR property (of type WINDOW) containsthe ID of another top-level window.
Theimplication isthat thiswindow isapop-up on behalf of the named window, and window managers may
decide not to decorate transient windows or may treat them differently in other ways. In particular, window
managers should present newly mapped WM_TRANSIENT_FOR windows without requiring any user
interaction, even if mapping top-level windows normally does require interaction. Dialogue boxes, for
example, are an example of windows that should have WM_TRANSIENT_FOR set.

It isimportant not to confuse WM_TRANSIENT_FOR with override-redirect. WM_TRANSIENT_FOR
should be used in those cases where the pointer is not grabbed while the window ismapped (in other words,
if other windows are allowed to be active while the transient is up). If other windows must be prevented
from processing input (for example, when implementing pop-up menus), use override-redirect and grab
the pointer while the window is mapped.

WM_PROTOCOLS Property

TheWM_PROTOCOL Sproperty (of type ATOM) isalist of atoms. Each atom identifiesacommunication
protocol between the client and the window manager in which the client is willing to participate. Atoms
can identify both standard protocols and private protocols specific to individual window managers.

All the protocolsinwhich aclient can volunteer to take part involve the window manager sending theclient
aCl i ent Message event and the client taking appropriate action. For details of the contents of the event,
see ClientMessage Events In each case, the protocol transactions are initiated by the window manager.

TheWM_PROTOCOLS property isnot required. If it isnot present, the client does not want to participate
in any window manager protocols.

TheX Consortium will maintain aregistry of protocolsto avoid collisionsin the name space. Thefollowing
table lists the protocols that have been defined to date.

Protocol Section Purpose

WM_TAKE_FOCUS Input Focus Assignment of input focus
WM_SAVE _YOURSELF Appendix C Save client state request (deprecated)
WM_DELETE WINDOW Window Deletion Request to delete top-level window

It is expected that this table will grow over time.

30

Client-to-Window-Man-
ager Communication

WM_COLORMAP_WINDOWS Property

The WM_COLORMAP_WINDOWS property (of type WINDOW) on atop-level window isalist of the
IDs of windows that may need colormaps installed that differ from the colormap of the top-level window.
The window manager will watch this list of windows for changes in their colormap attributes. The top-
level window is always (implicitly or explicitly) on the watch list. For the details of this mechanism, see
Colormaps

WM_CLIENT_MACHINE Property

The client should set the WM_CLIENT_MACHINE property (of one of the TEXT types) to a string that
forms the name of the machine running the client as seen from the machine running the server.

Window Manager Properties

The properties that were described in the previous section are those that the client isresponsible for main-
taining on itstop-level windows. This section describes the properties that the window manager placeson
client's top-level windows and on the root.

WM_STATE Property

The window manager will placeaWM_STATE property (of type WM_STATE) on each top-level client
window that is not in the Withdrawn state. Top-level windows in the Withdrawn state may or may not
have the WM_STATE property. Once the top-level window has been withdrawn, the client may re-use it
for another purpose. Clients that do so should remove the WM_STATE property if it isstill present.

Some clients (such asx pr op) will ask the user to click over awindow on which the program isto operate.
Typically, theintent isfor thisto be atop-level window. To find atop-level window, clients should search
the window hierarchy beneath the selected location for a window with the WM_STATE property. This
search must berecursivein order to cover all window manager reparenting possibilities. If no window with
aWM_STATE property is found, it is recommended that programs use a mapped child-of-root window
if oneis present beneath the selected location.

The contents of the WM_STATE property are defined as follows:

Field Type Comments
state CARD32 (see the next table)
icon WINDOW ID of icon window

The following table lists the WM_STATE.state values:

State Value
WithdrawnState 0
Normal State 1
IconicState 3

Adding other fields to this property is reserved to the X Consortium. Values for the state field other than
those defined in the above table are reserved for use by the X Consortium.

The state field describes the window manager's idea of the state the window is in, which may not match
the client's idea as expressed in the initial_state field of the WM_HINTS property (for example, if the
user has asked the window manager to iconify thewindow). If itisNor nal St at e, the window manager
believes the client should be animating its window. If itis| coni cSt at e, the client should animate its
icon window. In either state, clients should be prepared to handle exposure events from either window.

31

Client-to-Window-Man-
ager Communication

When the window is withdrawn, the window manager will either change the state field's valueto W t h-
dr awnSt at e or it will removethe WM_STATE property entirely.

Theicon field should contain the window ID of the window that the window manager uses as the icon for
the window on which this property is set. If no such window exists, the icon field should be None. Note
that this window could be but is not necessarily the same window as the icon window that the client may
have specified in its WM_HINTS property. The WM_STATE icon may be a window that the window
manager has supplied and that contains the client's icon pixmap, or it may be an ancestor of the client's
icon window.

WM_ICON_SIZE Property

A window manager that wishes to place constraints on the sizes of icon pixmaps and/or windows should
place a property called WM_ICON_SIZE on the root. The contents of this property are listed in the fol-

lowing table.

Field Type Comments

min_width CARD32 The data for the icon size series
min_height CARD32

max_width CARD32

max_height CARD32

width_inc CARD32

height_inc CARD32

For more details see section 14.1.12 in Xlib - C Language X Interface.

Changing Window State

From the client's point of view, the window manager will regard each of the client's top-level windows as
being in one of three states, whose semantics are as follows:

* Nor mal St at e - Theclient's top-level window is viewable.

* | coni cSt at e - The client's top-level window isiconic (whatever that means for this window man-
ager). The client can assume that itstop-level window is not viewable, itsicon_window (if any) will be
viewable and, failing that, itsicon_pixmap (if any) or its WM_ICON_NAME will be displayed.

* Wt hdr awnSt at e - Neither the client's top-level window nor itsiconisvisible.

In fact, the window manager may implement states with semantics other than those described above. For
example, a window manager might implement a concept of an "inactive" state in which an infrequently
used client's window would be represented as a string in a menu. But this state is invisible to the client,
which would see itself merely as being in the Iconic state.

Newly created top-level windows are in the Withdrawn state. Once the window has been provided with
suitable properties, the client is free to change its state as follows:

» Withdrawn -> Normal - The client should map the window with WM_HINTS.initial_state being Nor -
mal St at e.

» Withdrawn -> Iconic - The client should map the window with WM_HINTS.initial_state being | con-
icState.

* Normal -> Iconic - Theclient should send aCl i ent Message event as described later in this section.

32

Client-to-Window-Man-
ager Communication

e Normal -> Withdrawn - The client should unmap the window and follow it with a synthetic Unmap-
Not i f y event as described later in this section.

* Iconic -> Normal - The client should map the window. The contents of WM_HINTS.initial_state are
irrelevant in this case.

* Iconic -> Withdrawn - The client should unmap the window and follow it with a synthetic UnnapNo-
ti fy event asdescribed later in this section.

Only the client can effect atransition into or out of the Withdrawn state. Once aclient'swindow hasleft the
Withdrawn state, the window will be mapped if it isin the Normal state and the window will be unmapped
if it isin the Iconic state. Reparenting window managers must unmap the client's window when it isin
the Iconic state, even if an ancestor window being unmapped renders the client's window unviewable.
Conversely, if areparenting window manager renders the client's window unviewable by unmapping an
ancestor, the client's window is by definition in the Iconic state and must also be unmapped.

Advice to Implementors

Clients can select for St r uct ur eNot i f y on their top-level windows to track transi-
tions between Normal and Iconic states. Receipt of a MapNot i f y event will indicate
a transition to the Normal state, and receipt of an UnnmapNot i f y event will indicate
atransition to the Iconic state.

When changing the state of the window to Withdrawn, the client must (in addition to unmapping the win-
dow) send a synthetic UnnapNot i fy event by using a SendEvent request with the following argu-
ments:

Argument Value
destination The root
propogate False
event-mask (SubstructureRedir ect|Substructur eNotify)
event: an UnmapNot i -
fy with:

event: Theroot

window: The window itself

from-configure: False

Rationale

Thereason for requiring the client to send asynthetic UnmapNot i f y eventisto ensure
that the window manager gets some notification of the client's desire to change state,
even though the window may already be unmapped when the desire is expressed.

Adviceto Implementors

For compatibility with obsolete clients, window managers should trigger the transition
to the Withdrawn state on the real UnnmapNot i f y rather than waiting for the synthetic
one. They should also trigger the transition if they receive a synthetic UnmapNot i fy
on awindow for which they have not yet received areal UnmapNot i fy.

When a client withdraws a window, the window manager will then update or remove the WM_STATE
property as described in WM_STATE Property. Clients that want to re-use a client window (e.g., by
mapping it again or reparenting it elsawhere) after withdrawing it must wait for the withdrawal to be

33

Client-to-Window-Man-
ager Communication

complete before proceeding. The preferred method for doing this is for clients to wait for the window
manager to update or remove the WM _STATE property. 2

If the transition is from the Normal to the I conic state, the client should send ad i ent Message event
to the root with:

» Window == the window to be iconified
* Type 3 == the atom WM_CHANGE_STATE

e Format == 32

Data[0] == IconicState
Rationale

Theformat of thisCl i ent Message event doesnot matchtheformat of Cl i ent Mes-
sages in ClientMessage Events. Thisis because they are sent by the window manager
to clients, and this message is sent by clients to the window manager.

Other values of datg[0] are reserved for future extensions to these conventions. The parameters of the
SendEvent request should be those described for the synthetic UnmapNot i fy event.

Adviceto Implementors

Clientscan also select for Vi si bi | i t yChange eventson their top-level or icon win-
dows. They will then receive a Vi si bi l i t yNot i fy (state==FullyObscured) event
when the window concerned becomes completely obscured even though mapped (and
thus, perhaps awaste of timeto update) anda Vi si bi | i t yNot i f y (state!=FullyOb-
scured) event when it becomes even partly viewable.

Adviceto Implementors

When a window makes a transition from the Normal state to either the Iconic or the
Withdrawn state, clients should be aware that the window manager may make transients
for this window inaccessible. Clients should not rely on transient windows being avail-
ableto the user when the transient owner window is not in the Normal state. When with-
drawing awindow, clients are advised to withdraw transients for the window.

Configuring the Window

Clients can resize and reposition their top-level windows by using the Conf i gur eW ndowrequest. The
attributes of the window that can be altered with this request are as follows:

» The[x,y] location of the window's upper |eft-outer corner
» The[width,height] of the inner region of the window (excluding borders)
* The border width of the window

e Thewindow's position in the stack

2 Earlier versions of these conventions prohibited clients from reading the WM_STATE property. Clients operating under the earlier conventions
used the technique of tracking Repar ent Not i f y events to wait for the top-level window to be reparented back to the root window. Thisis still
avalid technique; however, it works only for reparenting window managers, and the WM_STATE technique isto be preferred.

3 The type field of the Cl i ent Message event (called the message_type field by Xlib) should not be confused with the code field of the event
itself, which will havethevalue33(Cl i ent Message).

Client-to-Window-Man-
ager Communication

The coordinate system in which the location is expressed is that of the root (irrespective of any reparent-
ing that may have occurred). The border width to be used and win_gravity position hint to be used are
those most recently requested by the client. Client configure requests are interpreted by the window man-
ager in the same manner as the initial window geometry mapped from the Withdrawn state, as described
in WM_NORMAL_HINTS Property Clients must be aware that there is no guarantee that the window
manager will allocate them the requested size or location and must be prepared to deal with any size and
location. If the window manager decides to respond to a Conf i gur eRequest request by:

Not changing the size, location, border width, or stacking order of the window at all.

A client will receive asynthetic Conf i gur eNot i fy event that describes the (unchanged) geometry
of thewindow. The (x,y) coordinateswill bein the root coordinate system, adjusted for the border width
the client requested, irrespective of any reparenting that has taken place. The border_width will be the
border width the client requested. The client will not receivearea Conf i gur eNot i f y event because
no change has actualy taken place.

Moving or restacking the window without resizing it or changing its border width.

A client will receive a synthetic Conf i gur eNot i fy event following the change that describes the
new geometry of thewindow. The event's(x,y) coordinateswill beintheroot coordinate system adjusted
for the border width the client requested. The border_width will be the border width the client requested.
The client may not receive areal Confi gur eNot i fy event that describes this change because the
window manager may have reparented the top-level window. If the client does receive areal event, the
synthetic event will follow the real one.

Resizing the window or changing its border width (regardless of whether the window was also moved
or restacked).

A client that has selected for St r uct ur eNot i fy events will receive areal Confi gureNotify
event. Note that the coordinates in this event are relative to the parent, which may not be the root if the
window has been reparented. The coordinates will reflect the actual border width of the window (which
the window manager may have changed). The Tr ansl| at eCoor di nat es request can be used to
convert the coordinates if required.

The general ruleisthat coordinatesinreal Conf i gur eNot i fy eventsarein the parent's space; in syn-
thetic events, they arein the root space.

Adviceto Implementors

Clients cannot distinguish between the case where a top-level window is resized and
moved from the case where the window is resized but not moved, since areal Con-

figureNoti fy event will bereceived in both cases. Clients that are concerned with
keeping track of the absolute position of a top-level window should keep a piece of
state indicating whether they are certain of its position. Upon receipt of areal Confi g-

ur eNot i f y event on the top-level window, the client should note that the position is
unknown. Upon receipt of a synthetic Conf i gur eNot i fy event, the client should
note the position as known, using the position in thisevent. If the client receivesaKey -

Press, KeyRel ease, Butt onPress, Butt onRel ease, Mbti onNoti fy, En-

terNotifyorLeaveNoti fy eventonthewindow (or onany descendant), theclient
can deduce the top-level window's position from the difference between the (event-x,
event-y) and (root-x, root-y) coordinates in these events. Only when the position is un-
known does the client need to use the Tr ans| at eCoor di nat es request to find the
position of atop-level window.

Clients should be awarethat their borders may not bevisible. Window managers are freeto use reparenting
techniques to decorate client's top-level windows with borders containing titles, controls, and other details

35

Client-to-Window-Man-
ager Communication

to maintain a consistent look-and-fedl. If they do, they are likely to override the client's attempts to set
the border width and set it to zero. Clients, therefore, should not depend on the top-level window's border

being visible or useit to display any critical information. Other window managerswill allow the top-level
windows border to be visible.

Convention

Clients should set the desired value of the border-width attribute on al Confi g-
ur eW ndow reguests to avoid a race condition.

Clients that change their position in the stack must be aware that they may have been reparented, which
means that windows that used to be siblings no longer are. Using anonsibling as the sibling parameter on
aConf i gur eW ndowrequest will cause an error.

Convention

Clientsthat use a Conf i gur eW ndow request to request a change in their position in
the stack should do so using None in the sibling field.

Clients that must position themselves in the stack relative to some window that was originally a sibling
must do the Conf i gur eW ndowrequest (in case they are running under a nonreparenting window man-
ager), be prepared to deal with aresulting error, and then follow with asynthetic Conf i gur eRequest
event by invoking aSendEvent reguest with the following arguments:

Argument Value

destination The root

propogate False

event-mask (SubstructureRedir ect|Substructur eNotify)

event: an Conf i gur -
eRequest with:

event: Theroot
window: The window itself
Other parameters from the ConfigureWindow request

Window managersarein any casefreeto position windowsin the stack asthey seefit, and so clients should
not rely on receiving the stacking order they have requested. Clients should ignore the above-sibling field
of both real and synthetic Conf i gur eNot i fy eventsreceived on their top-level windows because this
field may not contain useful information.

Changing Window Attributes

The attributes that may be supplied when awindow is created may be changed by using the ChangeW n-
dowAt t ri but es request. The window attributes are listed in the following table:

Attribute Privateto Client
Background pixmap Yes
Background pixel Yes
Border pixmap Yes
Border pixel Yes
Bit gravity Yes

36

Client-to-Window-Man-
ager Communication

Input

Attribute Privateto Client
Window gravity No
Backing-store hint Yes

Save-under hint No

Event Mask No

Do-not-propagate mask Yes

Overide-redirectflag No

Colormap Yes

Cursor Yes

Most attributes are private to the client and will never be interfered with by the window manager. For the
attributes that are not private to the client:

The window manager is free to override the window gravity; a reparenting window manager may want
to set the top-level window's window gravity for its own purposes.

Clients are free to set the save-under hint on their top-level windows, but they must be aware that the
hint may be overridden by the window manager.

Windows, in effect, have per-client event masks, and so, clients may select for whatever events are
convenient irrespective of any events the window manager is selecting for. There are some events for
which only one client at atime may select, but the window manager should not select for them on any
of the client's windows.

Clients can set override-redirect on top-level windows but are encouraged not to do so except as de-
scribed in Pop-up Windows. and Redirecting Requests.

Focus

There are four models of input handling:

No Input - Theclient never expectskeyboard input. An examplewould bex| oad or another output-only
client.

Passive Input - The client expects keyboard input but never explicitly setsthe input focus. An example
would be a smple client with no subwindows, which will accept input in Poi nt er Root mode or
when the window manager sets the input focus to its top-level window (in click-to-type mode).

Locally Active Input - The client expects keyboard input and explicitly sets the input focus, but it only
does so when one of itswindows already has the focus. An example would be a client with subwindows
defining various data entry fields that uses Next and Prev keys to move the input focus between the
fields. It does so when its top-level window has acquired the focus in Poi nt er Root mode or when
the window manager sets the input focus to its top-level window (in click-to-type mode).

Globally Active Input - The client expects keyboard input and explicitly setsthe input focus, even when
it isin windows the client does not own. An example would be a client with a scroll bar that wants to
alow usersto scroll the window without disturbing the input focus even if it isin some other window.
It wants to acquire the input focus when the user clicks in the scrolled region but not when the user
clicksin the scroll bar itself. Thus, it wantsto prevent the window manager from setting the input focus
to any of itswindows.

The four input models and the corresponding values of the input field and the presence or absence of the
WM_TAKE_FOCUS atom in the WM_PROTOCOLS property are listed in the following table:

37

Client-to-Window-Man-
ager Communication

Input Model Input Field WM_TAKE_FOCUS
No Input False Absent
Passive True Absent
Localy Active True Present
Globally Active False Present

Passive and Locally Active clients set the input field of WM_HINTSto Tr ue, which indicates that they
require window manager assistance in acquiring the input focus. No Input and Globally Active clients set
the input field to Fal se, which requests that the window manager not set the input focus to their top-
level window.

Clients that use a Set | nput Focus request must set the time field to the timestamp of the event that
caused them to make the attempt. This cannot beaFocus| n event because they do not have timestamps.
Clients may also acquire the focus without a corresponding Ent er Not i f y. Note that clients must not
use Cur r ent Ti ne inthetimefield.

Clients using the Globally Active model can only use a Set | nput Focus reguest to acquire the input
focus when they do not already have it on receipt of one of the following events:

* ButtonPress

* ButtonRel ease

» Passive-grabbed KeyPr ess

» Passive-grabbed KeyRel ease

In general, clients should avoid using passive-grabbed key events for this purpose, except when they are
unavoidable (as, for example, a selection tool that establishes a passive grab on the keys that cut, copy,
or paste).

The method by which the user commands the window manager to set the focus to a window is up to the
window manager. For example, clients cannot determine whether they will seethe click that transfersthe
focus.

Windows with the atom WM_TAKE_FOCUS in their WM_PROTOCOLS property may receive a
d i ent Message event from the window manager (as described in ClientMessage Events.) with
WM_TAKE_FOCUS in its datg[Q] field and a valid timestamp (i.e., not Cur r ent Ti ne) in its data[1]
field. If they want the focus, they should respond with aSet | nput Focus request with itswindow field
set to the window of theirsthat last had the input focus or to their default input window, and the time field
set to the timestamp in the message. For further information, see Input Focus

A client could receive WM_TAKE_FOCUS when opening from an icon or when the user has clicked
outside the top-level window in an area that indicates to the window manager that it should assign the
focus (for example, clicking in the headline bar can be used to assign the focus).

The goal isto support window managers that want to assign the input focus to atop-level window in such
away that the top-level window either can assign it to one of its subwindows or can decline the offer of
the focus. For example, aclock or atext editor with no currently open frames might not want to take focus
even though the window manager generally believes that clients should take the input focus after being
deiconified or raised.

Clients that set the input focus need to decide a value for the revert-to field of the Set | nput Focus
request. This determines the behavior of the input focus if the window the focus has been set to becomes
not viewable. The value can be any of the following:

38

Client-to-Window-Man-
ager Communication

e Par ent - Ingenerd, clients should use this value when assigning focus to one of their subwindows.
Unmapping the subwindow will cause focus to revert to the parent, which is probably what you want.

» Poi nt er Root - Using this value with a click-to-type focus management policy leads to race condi-
tions because the window becoming unviewable may coincide with the window manager deciding to
move the focus elsewhere.

* None - Using thisvalue causes problemsif the window manager reparents the window, as most window
managers will, and then crashes. The input focus will be None, and there will probably be no way to
changeit.

Note that neither Poi nt er Root nor None isrealy safe to use.

Convention

Clients that invoke a Set | nput Focus request should set the revert-to argument to
Par ent .

A conventionisalso required for clients that want to give up the input focus. Thereis no safe value set for
them to set the input focus to; therefore, they should ignore input material.

Convention

Clients should not give up the input focus of their own volition. They should ignore
input that they receive instead.

Colormaps

The window manager isresponsiblefor installing and uninstalling colormaps on behalf of clientswith top-
level windows that the window manager manages.

Clients provide the window manager with hints as to which colormaps to install and uninstall. Clients
must not install or uninstall colormaps themselves (except under the circumstances noted below). When
a client's top-level window gets the colormap focus (as a result of whatever colormap focus policy is
implemented by the window manager), the window manager will ensure that one or more of the client's
colormaps are installed.

Clients whose top-level windows and subwindows al use the same colormap should set its ID in the
colormap field of thetop-level window's attributes. They should not set aWM_COLORMAP_WINDOWS
property on the top-level window. If they want to change the colormap, they should change the top-level
window's colormap attribute. The window manager will track changes to the window's colormap attribute
and install colormaps as appropriate.

Clients that create windows can use the value CopyFr onPar ent to inherit their parent's colormap.
Window managers will ensure that the root window's colormap field contains a colormap that is suitable
for clientstoinherit. In particular, the colormap will provide distinguishable colorsfor Bl ackPi xel and
Wi t ePi xel .

Top-level windows that have subwindows or override-redirect pop-up windows whose colormap require-
ments differ from the top-level window should have a WM_COLORMAP_WINDOWS property. This
property containsalist of 1Ds for windows whose colormaps the window manager should attempt to have
installed when, in the course of itsindividual colormap focus palicy, it assigns the colormap focus to the
top-level window (see WM_COLORMAP_WINDOWS Property). Thelist is ordered by the importance
to the client of having the colormaps installed. The window manager will track changes to this property
and will track changes to the colormap attribute of the windows in the property.

39

Client-to-Window-Man-
ager Communication

If the relative importance of colormaps changes, the client should update the
WM_COLORMAP_WINDOWS property to reflect the new ordering. If the top-level window does not
appear in the list, the window manager will assume it to be of higher priority than any window in the list.

WM_TRANSIENT_FOR windows can either have their own WM_COLORMAP_WINDOWS property
or appear in the property of the window they are transient for, as appropriate.

Rationale

An alternative design was considered for how clients should hint to the window manager
about their colormap requirements. This alternative design specified alist of colormaps
instead of alist of windows. The current design, alist of windows, was chosen for two
reasons. Firgt, it alows window managers to find the visuals of the colormaps, thus
permitting visual-dependent colormap installation policies. Second, it allows window
managersto select for Vi si bi | i t yChange events on the windows concerned and to
ensure that colormaps are only installed if the windows that need them are visible. The
alternative design alows for neither of these policies.

Adviceto Implementors

Clients should be aware of the min-installed-maps and max-installed-maps fields of the
connection setup information, and the effect that the minimum value has on the "re-
quired list" defined by the Protocol in the description of the | nst al | Col or nap re-
quest. Briefly, the min-installed-maps most recently installed maps are guaranteed to be
installed. Thisvaueis often one; clients needing multiple colormaps should beware.

Whenever possible, clients should use the mechani sms described above and | et thewindow manager handle
colormap installation. However, clients are permitted to perform colormap installation on their own while
they have the pointer grabbed. A client performing colormap installation must notify the window manager
prior to the first installation. When the client has finished its colormap installation, it must also notify
the window manager. The client notifies the window manager by issuing a SendEvent request with the
following arguments:

Argument Value
destination The root window of the screen on which the colormap isinstalled
propogate False
event-mask ColormapChange
event: and i ent Mes-
sage with:
window: The root window, as above
type: WM_COLORMAP_NOTIFY
format 32
data[0] the timestampe of the event that caused the client to start or stop installing
colormaps
data[1] 1if the client is starting colormap installation, O if the client is finished with
colormap installation
data[2] reserved, must be zero
data[3] reserved, must be zero
data[4] reserved, must be zero

40

Client-to-Window-Man-
ager Communication

Ilcons

This feature was introduced in version 2.0 of this document, and there will be a significant period of time
before all window managers can be expected to implement this feature. Before using this feature, clients
must check the compliance level of the window manager (using the mechanism described in Communi-
cation with the Window Manager by Means of Selections) to verify that it supports this feature. Thisis
necessary to prevent colormap installation conflicts between clients and older window managers.

Window managers should refrain from installing colormaps while a client has requested control of col-
ormap installation. The window manager should continue to track the set of installed colormaps so that it
can reinstate its colormap focus policy when the client has finished colormap installation.

This technique has race conditions that may result in the colormaps continuing to be installed even after
a client has issued its notification message. For example, the window manager may have issued some
I nst al | Col or map requests that are not executed until after the client's SendEvent and I nst al | -
Col or map requests, thus uninstalling the client's colormaps. If this occurs while the client till has the
pointer grabbed and before the client hasissued the "finished" message, the client may reinstall the desired
colormaps.

Advice to Implementors

Clients are expected to use this mechanism for things such as pop-up windows and for
animations that use override-redirect windows.

If aclient failstoissuethe "finished" message, the window manager may beleftin astate
where its colormap installation policy is suspended. Window manager implementors
may want to implement a feature that resets colormap installation policy in response to
a command from the user.

A client can hint to the window manager about the desired appearance of itsicon by setting:
* Astringin WM_ICON_NAME.

« All clients should do this because it provides a fallback for window managers whose ideas about icons
differ widely from those of the client.

A Pi xmap into the icon_pixmap field of the WM_HINTS property and possibly another into the
icon_mask field.

» Thewindow manager is expected to display the pixmap masked by the mask. The pixmap should be one
of thesizesfoundinthe WM_ICON_SIZE property on theroot. If this property isnot found, the window
manager is unlikely to display icon pixmaps. Window managers usualy will clip or tile pixmaps that
do not match WM_ICON_SIZE.

* A window into the icon_window field of the WM_HINTS property.

The window manager is expected to map that window whenever the client is in the Iconic state. In
general, the size of the icon window should be one of those specified in WM_ICON_SIZE on the root,
if it exists. Window managers are free to resize icon windows.

In the I conic state, the window manager usually will ensure that:
 If thewindow's WM_HINTS.icon_window is set, the window it namesisvisible.

* If the window's WM_HINTS.icon_window is not set but the window's WM_HINTS.icon_pixmap is
set, the pixmap it namesisvisible.

41

Client-to-Window-Man-
ager Communication

e Otherwise, the window's WM_ICON_NAME string isvisible.

Clients should observe the following conventions about their icon windows:

Conventions
» Theicon window should bean | nput Qut put child of the root.

» Theicon window should be one of the sizes specified in the WM_ICON_SIZE prop-
erty on theroot.

e Theicon window should use the root visual and default colormap for the screen in
question.

* Clients should not map their icon windows.
* Clients should not unmap their icon windows.
* Clients should not configure their icon windows.

» Clients should not set override-redirect on their icon windows or select for Resi z-
eRedi r ect eventsonthem.

 Clients must not depend on being able to receive input events by means of their icon
windows.

¢ Clients must not manipulate the borders of their icon windows.

» Clients must select for Exposur e events on their icon window and repaint it when
requested.

Window managers will differ asto whether they support input events to client's icon windows; most will
allow the client to receive some subset of the keys and buttons.

Window managers will ignore any WM_NAME, WM_ICON_NAME,
WM_NORMAL_HINTS, WM_HINTS, WM_CLASS, WM_TRANSIENT_FOR, WM_PROTOCOLS,
WM_COLORMAP_WINDOWS, WM_COMMAND, or WM_CLIENT_MACHINE propertiesthey find
on icon windows.

Pop-up Windows
Clients that wish to pop up awindow can do one of three things:

» They can create and map another normal top-level window, which will get decorated and managed as
normal by the window manager. See the discussion of window groups that follows.

« If the window will be visible for a relatively short time and deserves a somewhat lighter treatment,
they can set the WM_TRANSIENT_FOR property. They can expect less decoration but can set all the
normal window manager properties on the window. An example would be a dialog box.

* If thewindow will be visible for a very short time and should not be decorated at al, the client can set
override-redirect on the window. In general, this should be done only if the pointer is grabbed while
the window is mapped. The window manager will never interfere with these windows, which should be
used with caution. An example of an appropriate use is a pop-up menu.

Adviceto Implementors

42

Client-to-Window-Man-
ager Communication

The user will not be able to move, resize, restack, or transfer the input focus to over-
ride-redirect windows, since the window manager is not managing them. If it is neces-
sary for aclient to receive keystrokes on an override-redirect window, either the client
must grab the keyboard or the client must have another top-level window that is not
override-redirect and that has selected the Locally Active or Globally Active focus mod-
el. The client may set the focus to the override-redirect window when the other window
receivesaWM_TAKE_FOCUS message or one of the events listed in Input Focus in
the description of the Globally Active focus model.

Window managers are free to decide if WM_TRANSIENT_FOR windows should be iconified when the
window they are transient for is. Clients displaying WM_TRANSIENT_FOR windows that have (or re-
guest to have) the window they are transient for iconified do not need to request that the same operation
be performed on the WM_TRANSIENT_FOR window; the window manager will change its state if that
isthe policy it wishesto enforce.

Window Groups

A set of top-level windows that should be treated from the user's point of view as related (even though
they may belong to a number of clients) should be linked together using the window_group field of the
WM _HINTS structure.

One of the windows (that is, the one the others point to) will be the group leader and will carry the group
as opposed to the individual properties. Window managers may treat the group leader differently from
other windows in the group. For example, group leaders may have the full set of decorations, and other
group members may have arestricted set.

It is not necessary that the client ever map the group leader; it may be a window that exists solely as a
placeholder.

It is up to the window manager to determine the policy for treating the windows in a group. At present,
thereis no way for aclient to request a group, as opposed to an individual, operation.

Client Responses to Window Manager Actions

The window manager performs a number of operations on client resources, primarily on their top-level
windows. Clients must not try to fight this but may elect to receive natification of the window manager's
operations.

Reparenting

Clients must be aware that some window managerswill reparent their top-level windows so that awindow
that was created asachild of the root will be displayed asachild of somewindow belonging to the window
manager. The effects that this reparenting will have on the client are as follows:

» The parent value returned by a Quer y Tr ee request will no longer be the value supplied to the Cr e-
at eW ndow request that created the reparented window. There should be no need for the client to be
aware of the identity of the window to which the top-level window has been reparented. In particular,
a client that wishes to create further top-level windows should continue to use the root as the parent
for these new windows.

e The server will interpret the (x,y) coordinates in a Conf i gur eW ndow request in the new parent's
coordinate space. Infact, they usually will not beinterpreted by the server because areparenting window
manager usually will have intercepted these operations (see Redirection of Operations). Clients should
use the root coordinate space for these requests (see Configuring the Window).

43

Client-to-Window-Man-
ager Communication

e Confi gur eW ndow requests that name a specific sibling window may fail because the window
named, which used to be a sibling, no longer is after the reparenting operation (see Configuring the
Window).

The (x,y) coordinates returned by aGet Geormret r y request are in the parent's coordinate space and are
thus not directly useful after a reparent operation.

* A background of Par ent Rel at i ve will have unpredictable results.
A cursor of None will have unpredictable results.

Clients that want to be notified when they are reparented can select for St r uct ur eNot i f y eventson
their top-level window. They will receiveaRepar ent Not i f y eventif and when reparenting takesplace.
When aclient withdraws atop-level window, the window manager will reparent it back to the root window
if the window had been reparented el sewhere.

If the window manager reparents a client's window, the reparented window will be placed in the save-
set of the parent window. This means that the reparented window will not be destroyed if the window
manager terminates and will be remapped if it was unmapped. Note that this appliesto all client windows
the window manager reparents, including transient windows and client icon windows.

Redirection of Operations

Clients must be aware that some window managerswill arrange for some client requests to be intercepted
and redirected. Redirected requests are not executed; they result instead in events being sent to the window
manager, which may decide to do nothing, to alter the arguments, or to perform the request on behalf of
the client.

The possibility that a request may be redirected means that a client cannot assume that any redirectable
request is actually performed when the request isissued or is actually performed at all. The requests that
may be redirected are MapW ndow, Conf i gur eW ndow, and Ci r cul at eW ndow.

Adviceto Implementors

Thefollowing isincorrect because the MapW ndow request may be intercepted and the
Pol yLi ne output made to an unmapped window:

MapW ndow A
Pol yLi ne A GC <poi nt> <point> ...
The client must wait for an Expose event before drawing in the window. 4

Thisnext exampleincorrectly assumesthat the Conf i gur eW ndowrequest isactually
executed with the arguments supplied:

Conf i gur eW ndow wi dt h=N hei ght =M
<out put assum ng windowis N by M

The client should select for St ruct ureNoti fy on its window and monitor the
window's size by tracking Conf i gur eNot i f y events.

4 This s true even if the client set the backi ng-store attribute to Al ways. The backing-store attribute is a only a hint, and the server
may stop maintaining backing store contents at any time.

Client-to-Window-Man-
ager Communication

Clients must be especially careful when attempting to set the focus to a window that
they have just mapped. This sequence may result in an X protocol error:

MapW ndow B
Set | nput Focus B

If the MapW ndow request has been intercepted, the window will still be unmapped,
causing the Set | nput Focus request to generate the error. The solution to this prob-
lemisfor clientsto select for Vi si bi | i t yChange onthewindow andto delay theis-
suance of the Set | nput Focus request until they havereceived aVi si bi | i t yNo-
ti fy eventindicating that the window isvisible.

This technique does not guarantee correct operation. The user may have iconified the
window by the time the Set | nput Focus request reaches the server, still causing an
error. Or the window manager may decide to map the window into I conic state, in which
case the window will not be visible. Thiswill delay the generation of the Vi si bi | i -
t yNot i fy event indefinitely. Clients must be prepared to handle these cases.

A window with the override-redirect hit set isimmune from redirection, but the bit should be set on top-
level windows only in cases where other windows should be prevented from processing input while the
override-redirect window is mapped (see Pop-up Windows) and while responding to Resi zeRequest
events (see Redirecting Requests).

Clientsthat have no non-Withdrawn top-level windowsand that map an override-redirect top-level window
aretaking over total responsibility for the state of the system. It istheir responsibility to:

» Prevent any preexisting window manager from interfering with their activities

* Restore the status quo exactly after they unmap the window so that any preexisting window manager
does not get confused

In effect, clients of thiskind are acting as temporary window managers. Doing so is strongly discouraged
because these clients will be unaware of the user interface policies the window manager istrying to main-
tain and because their user interface behavior is likely to conflict with that of less demanding clients.

Window Move

If the window manager moves a top-level window without changing its size, the client will receive a
synthetic Conf i gur eNot i f y event following the move that describes the new location in terms of the
root coordinate space. Clients must not respond to being moved by attempting to move themselves to a
better location.

Any real Confi gureNoti fy event on atop-level window implies that the window's position on the
root may have changed, even though the event reportsthat the window's position in its parent is unchanged
because the window may have been reparented. Note that the coordinates in the event will not, in this
case, be directly useful.

Thewindow manager will sendtheseeventsby usingaSendEvent request with thefollowing arguments:

Argument Value

destination The client's window
propagate False

event-mask StructureNotify

45

Client-to-Window-Man-
ager Communication

Window Resize

The client can elect to receive notification of being resized by selecting for St r uct ur eNot i fy events
on itstop-level windows. It will receive aConf i gur eNot i f y event. The size information in the event
will be correct, but the location will bein the parent window (which may not be the root).

The response of the client to being resized should be to accept the size it has been given and to do its best
with it. Clients must not respond to being resized by attempting to resize themselvesto a better size. If the
sizeisimpossible to work with, clients are free to request to change to the I conic state.

Iconify and Deiconify

A top-level window that is not Withdrawn will be in the Normal state if it is mapped and in the Iconic
state if it is unmapped. This will be true even if the window has been reparented; the window manager
will unmap the window as well asits parent when switching to the Iconic state.

The client can elect to be notified of these state changes by selecting for St ruct ur eNot i fy events
on the top-level window. It will receive aUnmapNot i f y event when it goes Iconic and aMapNot i fy
event when it goes Normal.

Colormap Change

Input

Clients that wish to be notified of their colormaps being installed or uninstalled should select for
Col or mapNot i fy events on their top-level windows and on any windows they have named in
WM_COLORMAP_WINDOWS properties on their top-level windows. They will receive Col or map-
Not i f y eventswith the new field FAL SE when the colormap for that window isinstalled or uninstalled.

Focus

Clients can request notification that they have the input focus by selecting for Focus Change events on
their top-level windows; they will receive Focus| n and FocusQut events. Clients that need to set the
input focus to one of their subwindows should not do so unlessthey have set WM_TAKE_FOCUS in their
WM_PROTOCOLS property and have done one of the following:

» Set theinput field of WM_HINTS to Tr ue and actually have the input focus in one of their top-level
windows

» Set theinput field of WM_HINTS to Fal se and have received a suitable event as described in Input
Focus.

» HavereceivedaWM_TAKE_FOCUS message as described in Input Focus.

Clients should not warp the pointer in an attempt to transfer the focus; they should set the focus and leave
the pointer alone. For further information, see The Pointer.

Once a client satisfies these conditions, it may transfer the focus to another of its windows by using the
Set | nput Focus request, which is defined as follows:

Set | nput Focus

focus: WINDOW or Pointer Root or None
revert-to: { Parent, Pointer Root, None }
time: TIMESTAMP or CurrentTime

46

Client-to-Window-Man-
ager Communication

Conventions

» Clientsthat useaSet | nput Focus request must set the time argument to the times-
tamp of the event that caused them to make the attempt. This cannot be aFocusl n
event because they do not have timestamps. Clients may also acquire the focus with-
out acorresponding Ent er Not i fy event. Clientsmust not use Cur r ent Ti e for
the time argument.

» Clientsthat useaSet | nput Focus regquest to set the focus to one of their windows
must set the revert-to field to Par ent .

ClientMessage Events

Thereis no way for clientsto prevent themselves being sent Cl i ent Message events.

Top-level windows withaWM_PROTOCOLS property may be sent Cl i ent Message events specific
to the protocols named by the atomsin the property (see WM_PROTOCOL S Property). For all protocaols,
thed i ent Message events have the following:

» WM_PROTOCOLS asthetypefield

Format 32

The atom that names their protocol in the datg[0] field
» A timestamp in their data[1] field
The remaining fields of the event, including the window field, are determined by the protocol.

These events will be sent by using a SendEvent request with the following arguments:

Argument Value

destination The client's window
propagate False

event-mask () empty

event As specified by the protocol

Window Deletion

Clients, usually those with multiple top-level windows, whose server connection must survive the dele-
tion of some of their top-level windows, should include the atom WM_DELETE_WINDOW in the
WM_PROTOCOLS property on each such window. They will receivead i ent Message event asde-
scribed above whose datg[0] fieldisWM_DELETE_WINDOW.

ClientsreceivingaWM_DELETE_WINDOW message should behave asif the user selected "del ete win-
dow" from a hypothetical menu. They should perform any confirmation dialog with the user and, if they
decide to complete the deletion, should do the following:

« Either change the window's state to Withdrawn (as described in Changing Window State) or destroy
the window.

» Destroy any internal state associated with the window.

If the user aborts the deletion during the confirmation dial og, the client should ignore the message.

47

Client-to-Window-Man-
ager Communication

Clients are permitted to interact with the user and ask, for example, whether a file associated with the
window to be deleted should be saved or the window deletion should be cancelled. Clientsare not required
to destroy the window itself; the resource may be reused, but all associated state (for example, backing
store) should be released.

If the client aborts a destroy and the user then selects DELETE WINDOW again, the window manager
should start the WM _DELETE_WINDOW protocol again. Window managers should not use Dest r oy -
W ndow requests on awindow that hasWM_DELETE_WINDOW inits WM_PROTOCOLS property.

Clientsthat choose not to include WM_DELETE_WINDOW in the WM_PROTOCOLS property may be
disconnected from the server if the user asks for one of the client's top-level windows to be deleted.

Redirecting Requests

Normal clients can use the redirection mechanism just as window managers do by selecting for Sub-
st ruct ur eRedi r ect eventson aparent window or Resi zeRedi r ect events on awindow itself.
However, at most, one client per window can select for these events, and a convention is needed to avoid
clashes.

Convention

Clients (including window managers) should select for Subst r uct ur eRedi r ect
and Resi zeRedi r ect eventsonly on windows that they own.

In particular, clientsthat need to take some special action if they areresized can select for Resi zeRedi -
rect eventson their top-level windows. They will receive a Resi zeRequest event if the window
manager resizestheir window, and theresize will not actually take place. Clients are free to make what use
they like of the information that the window manager wants to change their size, but they must configure
the window to the width and height specified in the event in a timely fashion. To ensure that the resize
will actually happen at this stage instead of being intercepted and executed by the window manager (and
thus restarting the process), the client needs temporarily to set override-redirect on the window.

Convention
Clientsreceiving Resi zeRequest events must respond by doing the following:
* Setting override-redirect on the window specified in the event

» Configuring the window specified in the event to the width and height specified in
the event as soon as possible and before making any other geometry requests

* Clearing override-redirect on the window specified in the event

If awindow manager detectsthat aclient isnot obeying thisconvention, it isfreeto takewhatever measures
it deems appropriate to deal with the client.

Communication with the Window Manager by
Means of Selections

For each screen they manage, window managers will acquire ownership of a selection named WM_Sn,
where n is the screen number, as described in Discriminated Names Window managers should comply
with the conventions for "Manager Selections' described in Manager Selections. The intent is for clients

48

Client-to-Window-Man-
ager Communication

to be able to request a variety of information or services by issuing conversion requests on this selection.
Window managers should support conversion of the following target on their manager selection:

Atom Type Data Received

VERSION INTEGER Two integers, which are the major and minor rel ease numbers
(respectively) of the ICCCM with which the window manag-
er complies. For thisversion of the ICCCM, the numbers are
2and0.?

8 As a special case, clients not wishing to implement a selection request may simply issue a Get Sel ect i onOaner request on

the appropriate WM_Sn selection. If this selection is owned, clients may assume that the window manager complies with ICCCM
version 2.0 or later.

Summary of Window Manager Property Types

The window manager properties are summarized in the following table (see also section 14.1 of Xlib- C
Language X Interface).

Name Type Format See Section

WM_CLASS STRING 8 WM _CLASS Property

WM_CLIENT_MACHINE TEXT WM_CLIENT_MACHINE Prop-
erty

WM_COLORMAP_WINDOWS WINDOW 32 WM_COLORMAP_WINDOWS
Property

WM_HINTS WM_HINTS 32 WM_HINTS Property

WM_ICON_NAME TEXT WM_ICON_NAME Property

WM _ICON_SIZE WM_ICON_SIZE 32 WM _ICON_SIZE Property

WM_NAME TEXT WM_NAME Property

WM_NORMAL_HINTS WM_SIZE HINTS 32 WM_NORMAL_HINTS Proper-
ty

WM_PROTOCOLS ATOM 32 WM_PROTOCOLS Property

WM_STATE WM_STATE 32 WM _STATE Property

WM_TRANSIENT_FOR WINDOW 32 WM_TRANSIENT_FOR Proper-
ty

49

Chapter 5. Session Management and
Additional Inter-Client Exchanges

This section contains some conventions for clients that participate in session management. See X Session
Management Protocol for further details. Clients that do not support this protocol cannot expect their
window state (e.g., WM_STATE, position, size, and stacking order) to be preserved across sessions.

Client Support for Session Management

Each session participant will obtain a unique client identifier (client-1D) from the session manager. The
client must identify one top-level window as the "client leader." This window must be created by the
client. It may be in any state, including the Withdrawn state. The client leader window must have a
SM_CLIENT_ID property, which contains the client-ID obtained from the session management protocol.
That property must:

* Beof type STRING
* Beof format 8
» Contain the client-1D as astring of XPCS characters encoded using 1SO 8859-1

All top-level, nontransient windows created by a client on the same display as the client leader must
have a WM_CLIENT_LEADER property. This property contains a window 1D that identifies the client
leader window. The client leader window must have a WM_CLIENT_LEADER property containing its
own window ID (i.e., the client leader window is pointing to itself). Transient windows need not have
aWM_CLIENT_LEADER property if the client leader can be determined using the information in the
WM_TRANSIENT_FOR property. The WM_CLIENT_LEADER property must:

» Beof type WINDOW
* Beof format 32
» Contain the window ID of the client leader window

A client must withdraw all of its top-level windows on the same display before modifiying either the
WM_CLIENT_LEADER or the SM_CLIENT_ID property of its client leader window.

It isnecessary that other clients be ableto uniquely identify awindow (across sessions) among all windows
related to the same client-1D. For example, awindow manager can require thisunique ID to restore geom-
etry information from aprevious session, or aworkspace manager could useit to restore information about
which windows are in which workspace. A client may optionally provideaWM_WINDOW_ROLE prop-
erty to uniquely identify awindow within the scope specified above. The combination of SM_CLIENT _ID
and WM_WINDOW _ROLE can be used by other clients to uniquely identify awindow across sessions.

If the WM_WINDOW_ROLE property is not specified on a top-level window, a client that needs to
uniquely identify that window will try to use instead the values of WM_CLASS and WM_NAME. If a
client has multiple windows with identical WM_CLASS and WM_NAME properties, then it should pro-
videaWM_WINDOW_ROLE property.

The client must set the WM_WINDOW_ROLE property to a string that uniquely identifies that window
among all windows that have the same client leader window. The property must:

» Beof type STRING

50

Session Management and Ad-
ditional Inter-Client Exchanges

* Beof format 8

» Contain a string restricted to the XPCS characters, encoded in 1SO 8859-1

Window Manager Support for Session Manage-
ment

A window manager supporting session management must register with the session manager and obtain
its own client-ID. The window manager should save and restore information such as the WM_STATE,
the layout of windows on the screen, and their stacking order for every client window that has a valid
SM_CLIENT_ID property (on itself, or on the window named by WM_CLIENT_LEADER) and that
can be uniquely identified. Clients are allowed to change this state during the first phase of the session
checkpoint process. Therefore, window managers should request a second checkpoint phase and save
clients state only during that phase.

Support for ICE Client Rendezvous

The Inter-Client Exchange protocol (ICE) defined as of X11R6 specifies a generic communication frame-
work, independent of the X server, for dataexchange between arbitrary clients. | CE also defines a protocol
for any two ICE clients who also have X connections to the same X server to locate (rendezvous with)
each other.

This protocal, called the "ICE X Rendezvous' protocol, is defined in the I CE specification, Appendix B,
and uses the property ICE_PROTOCOLS plus Cl i ent Message events. Refer to that specification for
complete details.

51

Chapter 6. Manipulation of Shared
Resources

X Version 11 permits clients to manipulate a number of shared resources, for example, the input focus,
the pointer, and colormaps. Conventions are required so that clients share resources in an orderly fashion.

The Input Focus

Clients that explicitly set the input focus must observe one of two modes:
* Locally active mode

» Globally active mode

Conventions

» Locdly active clients should set the input focus to one of their windows only when
it is already in one of their windows or when they receive a WM_TAKE_FOCUS
message. They should set the input field of the WM_HINTS structureto Tr ue.

» Globally active clients should set the input focus to one of their windows only when
they receive a button event and a passive-grabbed key event, or when they receive a
WM_TAKE_FOCUS message. They should set the input field of the WM_HINTS
structure to Fal se.

* Inaddition, clients should use the timestamp of the event that caused them to attempt
to set the input focus as the time field on the Set | nput Focus request, not Cur -
rent Ti ne.

The Pointer

In genera, clients should not warp the pointer. Window managers, however, may do so (for example,
to maintain the invariant that the pointer is always in the window with the input focus). Other window
managers may want to preserve theillusion that the user isin sole control of the pointer.

Conventions
* Clients should not warp the pointer.

 Clientsthat insist on warping the pointer should do so only with the src-window ar-
gument of the War pPoi nt er request set to one of their windows.

Grabs

A client's attempt to establish abutton or akey grab on awindow will fail if some other client has already
established a conflicting grab on the same window. The grabs, therefore, are shared resources, and their
use requires conventions.

In conformance with the principle that clients should behave, as far as possible, when awindow manager
is running as they would when it is not, a client that has the input focus may assume that it can receive
all the available keys and buttons.

52

Manipulation of Shared Resources

Convention

Window managers should ensure that they provide some mechanism for their clients
to receive events from all keys and all buttons, except for events involving keys whose
KeySyms are registered as being for window management functions (for example, a
hypothetical WINDOW KeySym).

In other words, window managers must provide some mechanism by which a client can receive events
from every key and button (regardless of modifiers) unless and until the X Consortium registers some
KeySyms as being reserved for window management functions. Currently, no KeySyms are registered for
window management functions.

Even so, clients are advised to alow the key and button combinations used to elicit program actionsto be
modified, because some window managers may choose not to observe this convention or may not provide
a convenient method for the user to transmit events from some keys.

Convention
Clients should establish button and key grabs only on windows that they own.

In particular, this convention means that awindow manager that wishesto establish agrab over theclient's
top-level window should either establish the grab on theroot or reparent the window and establish the grab
on aproper ancestor. In some cases, awindow manager may want to consume the event received, placing
the window in a state where a subsequent such event will go to the client. Examples are:

 Clicking in awindow to set focus with the click not being offered to the client
* Clicking in aburied window to raise it, again, with the click not offered to the client

Moretypically, awindow manager should add to, rather than replace, the client's semantics for key+button
combinations by allowing the event to be used by the client after the window manager is done with it. To
ensure this, the window manager should establish the grab on the parent by using the following:

poi nt er/ keyboar d- mode == Synchronous

Then, the window manager should releasethe grab by usingan Al | owEvent s request with thefollowing
specified:

node == Repl ayPoi nt er/ Keyboard

In thisway, the client will receive the events asiif they had not been intercepted.

Obviously, these conventions place some constraints on possible user interface policies. Thereis atrade-
off here between freedom for window managers to implement their user interface policies and freedom
for clientsto implement theirs. The dilemmais resolved by:

» Allowing window managers to decide if and when a client will receive an event from any given key
or button

 Placing arequirement on the window manager to provide some mechanism, perhaps a"Quote" key, by
which the user can send an event from any key or button to the client

Colormaps

Colormaps prescribes conventions for clients to communicate with the window manager about their col-
ormap needs. If your clientsareDi r ect Col or type applications, you should consult section 14.3 of Xlib

53

Manipulation of Shared Resources

- C Language X Interface for conventions connected with sharing standard colormaps. They should look
for and create the properties described there on the root window of the appropriate screen.

The contents of the RGB_COLOR_MAP type property are as follows:

Field Type Comments

colormap COLORMAP ID of the colormap described
red_max CARD32 Values for pixel calculations
red mult CARD32

green_max CARD32

green_mult CARD32

blue_max CARD32

blue_mult CARD32

base pixel CARD32

visua_id VISUALID Visual to which colormap belongs
kill_id CARD32 ID for destroying the resources

When deleting or replacing an RGB_COLOR_MAP, it is not sufficient to delete the property; it isimpor-
tant to free the associated colormap resources aswell. If kill_id isgreater than one, the resources should be
freedbyissuingaKi I | O i ent requestwithkill_id astheargument. If kill_idisone, theresourcesshould
befreed by issuing aFr eeCol or nap regquest with colormap asthe colormap argument. If kill_id iszero,
no attempt should be made to free the resources. A client that creates an RGB_COLOR_MAP for which
the colormap resourceis created specifically for this purpose should set kill_id to one (and can create more
than one such standard colormap using asingle connection). A client that createsan RGB_ COLOR_MAP
for which the colormap resource is shared in some way (for example, is the default colormap for the root
window) should create an arbitrary resource and useitsresource ID for kill_id (and should create no other
standard colormaps on the connection).

Convention

If an RGB_COLOR_MAP property is too short to contain the visual _id field, it
can be assumed that the visual_id is the root visual of the appropriate screen. If an
RGB_COLOR_MAP property is too short to contain the kill_id field, a value of zero
can be assumed.

During the connection handshake, the server informs the client of the default colormap for each screen.
Thisis a colormap for the root visual, and clients can use it to improve the extent of colormap sharing
if they use the root visual.

The Keyboard Mapping

The X server contains a table (which is read by Get Keyboar diVappi ng requests) that describes the
set of symbols appearing on the corresponding key for each keycode generated by the server. This table
does not affect the server's operations in any way; it is ssmply a database used by clients that attempt to
understand the keycodes they receive. Nevertheless, it is a shared resource and requires conventions.

Itispossiblefor clientsto modify thistable by usinga ChangeKeyboar dMappi ng request. In general,
clients should not do this. In particular, thisis not the way in which clients should implement key bindings
or key remapping. The conversion between a sequence of keycodes received from the server and a string
in aparticular encoding is aprivate matter for each client (asit must be in aworld where applications may

54

Manipulation of Shared Resources

be using different encodings to support different languages and fonts). See the Xlib reference manual for
converting keyboard events to text.

The only valid reason for using aChangeKeyboar dMappi ng request is when the symbols written on
the keys have changed as, for example, when a Dvorak key conversion kit or a set of APL keycaps has
been installed. Of course, a client may have to take the change to the keycap on trust.

The following illustrates a permissible interaction between a client and a user:

* "You just started me on a server without a Pause key. Please choose a key to be the Pause key and
pressit now."

* Pressesthe Scroll Lock key
» "Adding Pause to the symbols on the Scroll Lock key: Confirm or Abort."
» Confirms

» UsesaChangeKeyboar dMappi ng request to add Pause to the keycode that aready contains Scroll
Lock and issues this request, "Please paint Pause on the Scroll Lock key." Clients should not use
ChangeKeyboar dMappi ng requests.

If aclient succeeds in changing the keyboard mapping table, all clients will receive Mappi ngNot i fy
(request==K eyboard) events. There is no mechanism to avoid receiving these events.

Convention

Clients receiving Mappi ngNot i fy (request==Keyboard) events should update any
internal keycode translation tables they are using.

The Modifier Mapping

X Version 11 supports 8 modifier bits of which 3 are preassigned to Shift, Lock, and Control. Each mod-
ifier bit is controlled by the state of a set of keys, and these sets are specified in a table accessed by
CGet Modi fi er Mappi ng and Set Modi f i er Mappi ng requests. This table is a shared resource and
requires conventions.

A client that needs to use one of the preassigned modifiers should assume that the modifier table has been
set up correctly to control these modifiers. The Lock modifier should be interpreted as Caps L ock or Shift
Lock according as the keycodes in its controlling set include XK_Caps L ock or XK_Shift Lock.

Convention

Clients should determine the meaning of a modifier bit from the KeySyms being used
to control it.

A client that needs to use an extra modifier (for example, META) should do the following:

» Scantheexisting modifier mappings. If it findsamodifier that contains akeycode whose set of KeySyms
includes XK_Meta L or XK_Meta R, it should use that modifier bit.

« If there is no existing modifier controlled by XK_Meta L or XK_Meta R, it should select an unused
modifier bit (one with an empty controlling set) and do the following:

 If there is a keycode with XL_Meta L in its set of KeySyms, add that keycode to the set for the
chosen modifier.

55

Manipulation of Shared Resources

« If there is a keycode with XL_Meta R in its set of KeySyms, add that keycode to the set for the
chosen modifier.

« If the controlling set is still empty, interact with the user to select one or more keysto be META.

« |f there are no unused modifier bits, ask the user to take corrective action.

Conventions

 Clients needing a modifier not currently in use should assign keycodes carrying
suitable KeySyms to an unused modifier bit.

* Clientsassigning their own modifier bits should ask the user politely to remove his
or her hands from the key in question if their Set Mbdi fi er Mappi ng request
returnsaBusy status.

Thereis no good solution to the problem of reclaiming assignments to the five nonpreassigned modifiers
when they are no longer being used.

Convention

The user must use xnodmap or some other utility to deassign obsolete modifier map-
pings by hand.

When aclient succeeds in performing a Set Modi f i er Mappi ng request, all clientswill receive Map-

pi ngNot i fy (request==Modifier) events. Thereisno mechanism for preventing these eventsfrom being
received. A client that uses one of the nonpreassigned modifiers that receives one of these events should
do aGet Modi fi er Mappi ng request to discover the new mapping, and if the modifier it is using has
been cleared, it should reinstall the modifier.

Notethat a Gr abSer ver request must be used to make the Get Modi fi er Mappi ng and Set Modi -
fi er Mappi ng pair in these transactions atomic.

56

Chapter 7. Device Color
Characterization

The X protocol provides explicit Red, Green, and Blue (RGB) values, which are used to directly drive
amonitor, and color names. RGB values provide a mechanism for accessing the full capabilities of the
display device, but at the expense of having the color perceived by the user remain unknowable through the
protocol. Color names were originally designed to provide access to a device-independent color database
by having the server vendor tune the definitions of the colorsin that textual database. Unfortunately, this
still does not provide the client any way of using an existing device-independent color, nor for the client
to get device-independent color information back about colors that it has selected.

Furthermore, the client must be able to discover which set of colors are displayable by the device (the
device gamut), both to allow colorsto beintelligently modified to fit within the device capabilities (gamut
compression) and to enable the user interface to display a representation of the reachable color space to
the user (gamut display).

Therefore, asystemisneeded that will provide full accessto device-independent color spacesfor X clients.
This system should use a standard mechanism for naming the colors, be able to provide namesfor existing
colors, and provide means by which unreachable colors can be modified to fall within the device gamut.

We are fortunate in this area to have a seminal work, the 1931 CIE color standard, which is nearly uni-
versally agreed upon as adequate for describing colors on CRT devices. This standard uses a tri-stimu-
lus model called CIE XYZ in which each perceivable color is specified as a triplet of numbers. Other
appropriate device-independent color models do exist, but most of them are directly traceable back to this
original work.

X device color characterization provides device-independent color spacesto X clients. It does this by pro-
viding the barest possible amount of information to the client that allows the client to construct a mapping
between CIE XY Z and the regular X RGB color descriptions.

Device color characterization is defined by the name and contents of two window propertiesthat, together,
permit converting between CIE XY Z space and linear RGB device space (such as standard CRTS). Linear
RGB devicesrequire just two pieces of information to completely characterize them:

« A 3x3matrix M and itsinverse M, which convert between XY Z and RGB intensity (RGBintensity):
XYZ =M™ x RGBinensity

A way of mapping between RGB intensity and RGB protocol value. XDCCC supportsthree mechanisms
which will be outlined later.

If other device types are eventually necessary, additional properties will be required to describe them.

XYZ <-> RGB Conversion Matrices

Because of the limited dynamic range of both XYZ and RGB intensity, these matrices will be encoded
using a fixed-point representation of a 32-bit two's complement number scaled by 2%, giving a range of
-16t0 16 - g where g = 2%/,

These matrices will be packed into an 18-element list of 32-bit values, XY Z -> RGB matrix first, in row
major order and stored in the XDCCC_LINEAR_RGB_MATRICES properties (format = 32) on the root
window of each screen, using values appropriate for that screen.

57

Device Color Characterization

Thiswill be encoded as shown in the following table:

Field Type Comments

Moo INT32 Interpreted as a fixed-point number -16 < x < 16
Mot INT32

INT32

M33 INT32

M0 INT32

Mg4 INT32

INT32

M35 INT32

Intensity (dA RGB Value Conversion

XDCCC providestwo representations for describing the conversion between RGB intensity and the actual
X protocol RGB values:

0 RGB val ue/RGB intensity level pairs
1 RGB intensity ranp

In both cases, the relevant data will be stored in the XDCCC_LINEAR_RGB_CORRECTION properties
on the root window of each screen, using values appropriate for that screen, in whatever format provides
adequateresol ution. Each property can consist of multiple entries concatenated together, if different visuals
for the screen require different conversion data. An entry with aVisuallD of O specifiesdatafor al visuals
of the screen that are not otherwise explicitly listed.

The first representation is an array of RGB value/intensity level pairs, with the RGB values in strictly
increasing order. When converting, the client must linearly interpol ate between adjacent entriesin thetable
to compute the desired value. This allows the server to perform gamma correction itself and encode that
fact in a short two-element correction table. The intensity will be encoded as an unsigned number to be
interpreted as a value between 0 and 1 (inclusive). The precision of this value will depend on the format
of the property in which it is stored (8, 16, or 32 hits). For 16-bit and 32-bit formats, the RGB value will
simply be the value stored in the property. When stored in 8-bit format, the RGB value can be computed
from the value in the property by:

RGB sub value ~ = ~ { Property ~ Value ~ times ~ 65535} over 255

Because the three electron guns in the device may not be exactly alike in response characteristics, it is
necessary to alow for three separate tables, one each for red, green, and blue. Therefore, each table will
be preceded by the number of entriesin that table, and the set of tables will be preceded by the number of
tables. When three tables are provided, they will bein red, green, blue order.

Thiswill be encoded as shown in the following table:

XDCCC_LINEAR_RGB_CORRECTION Property Contents for Type O Correction

Field Type Comments
VisualDO CARD Most significant portion of VisuallD
VisualD1 CARD Existsif and only if the property format is 8

58

Device Color Characterization

Field Type Comments

VisualD2 CARD Existsif and only if the property format is 8

VisualD3 CARD Least significant portion, existsif and only if the property
formatis8 or 16

type CARD 0 for this type of correction

count CARD Number of tables following (either 1 or 3)

length CARD Number of pairs-1 following in thistable

value CARD X Protocol RBG vaue

intensity CARD Interpret as number O < intensity < 1

Total of length+ 1 pairs of value/intensity values

lengthg CARD Number of pairs-1 following in thistable (if and only if
countis3

value CARD X Protocol RBG value

intensity CARD Interpret as anumber 0 < intensity < 1

Total of length+ 1 pairs of value/intensity values

lengthb CARD Number of pairs-1 following in thistable (if and only if
countis3

value CARD X Protocol RBG vaue

intensity CARD Interpret as anumber 0 < intensity < 1

Total of length+ 1 pairs of value/intensity values

The VisuadlD is stored in 4, 2, or 1 pieces, depending on whether the property format is 8, 16, or 32,
respectively. The VisuallD is always stored most significant piece first. Note that the length fields are
stored as one less than the actual length, so 256 entries can be stored in format 8.

The second representation is a simple array of intensities for alinear subset of RGB values. The expected
size of thistable isthe bits-per-rgb-value of the screen, but it can be any length. Thisis similar to the first
mechanism, except that the RGB value numbers are implicitly defined by the index in the array (indices
start at 0):

RGB sub value ~ =~ { Array ~ Index ~times ~ 65535} over { Array ~Size~-~1}

When converting, the client may linearly interpolate between entriesin thistable. The intensity valueswill
be encoded just as in the first representation.

Thiswill be encoded as shown in the following table:

XDCCC_LINEAR_RGB_CORRECTION Property Contents for Type 1 Correction

Field Type Comments

VisuallDO CARD Most significant portion of VisuallD

VisualD1 CARD Existsif and only if the property format is 8

VisualD2 CARD Existsif and only if the property format is 8

VisualD3 CARD Least significant portion, existsif and only if the property
format is 8 or 16

type CARD 1 for thistype of correction

count CARD Number of tables following (either 1 or 3)

59

Device Color Characterization

Field Type Comments

length CARD Number of pairs-1 following in thistable

intensity CARD Interpret as number O < intensity < 1

Total of length+ 1 pairs of value/intensity values

lengthg CARD Number of pairs-1 following in thistable (if and only if
countis3

intensity CARD Interpret as anumber 0 < intensity < 1

Total of length+ 1 pairs of value/intensity values

lengthb CARD Number of pairs-1 following in thistable (if and only if
countis3

intensity CARD Interpret as anumber 0 < intensity < 1

Total of length+ 1 pairs of value/intensity values

60

Chapter 8. Conclusion

This document provides the protocol-level specification of the minimal conventions needed to ensure that
X Version 11 clients can interoperate properly. This document specifies interoperability conventions only
for the X Version 11 protocol. Clients should be aware of other protocols that should be used for better
interoperation in the X environment. The reader is referred to X Session Management Protocol for infor-
mation on session management, and to I nter-Client Exchange Protocol for information on general -purpose
communication among clients.

The X Registry

The X Consortium maintains aregistry of certain X-related items, to aid in avoiding conflicts and in shar-
ing of such items. Readers are encouraged to use the registry. The classes of items kept in the registry
that are relevant to the ICCCM include property names, property types, selection names, selection tar-
gets, WM_PROTOCOLS protocols, C i ent Message types, and application classes. Requeststo regis-
ter items, or questions about registration, should be addressed to

xXregistry@x.org
or to

The X.Org Foundation -- X11 Registry
c/o Alan Coopersmith

Oracle Corporation

M/S SCA17-3824

4170 Network Circle

Santa Clara, CA 95054

USA

Electronic mail will be acknowledged upon receipt. Please allow up to 4 weeks for a formal response to
registration and inquiries.

The registry is published as part of the X software distribution from the X.Org Foundation. All registered
items must have the postal address of someone responsible for the item or a reference to a document
describing the item and the postal address of where to write to obtain the document.

61

Appendix A. Revision History

This appendix describes the revision history of this document and summarizes the incompatibilities be-
tween this and earlier versions.

The X11R2 Draft

The February 25, 1988, draft that was distributed as part of X Version 11, Release 2, was clearly labeled as
such, and many areas were explicitly labeled as liable to change. Nevertheless, in the revision work done
since then, we have been very careful not to introduce gratuitous incompatibility. As far as possible, we
have tried to ensure that clients obeying the conventions in the X11R2 draft would still work.

The July 27, 1988, Draft

The Consortium review was based on a draft dated July 27, 1988. This draft included several areas in
which incompatibilities with the X 11R2 draft were necessary:

» Theuseof property None inConvert Sel ect i on requestsisno longer alowed. Ownersthat receive
them are free to use the target atom as the property to respond with, which will work in most cases.

» The protocol for INCREMENTAL type properties as selection replies has changed, and the name has
been changed to INCR. Selection requestors are free to implement the earlier protocol if they receive
properties of type INCREMENTAL.

» The protocol for INDIRECT type properties as selection replies has changed, and the name has been
changed to MULTIPLE. Selection requestors are free to implement the earlier protocol if they receive
properties of type INDIRECT.

» The protocol for the special CLIPBOARD client has changed. The earlier protocol is subject to race
conditions and should not be used.

» The set of state valuesin WM_HINTS.initial_state has been reduced, but the values that are till valid
are unchanged. Window managers should treat the other values sensibly.

» The methods an application uses to change the state of its top-level window have changed but in such
away that cases that used to work will still work.

» Thex, Yy, width, and height fields have been removed from the WM_NORMAL_HINTS property and
replaced by pad fields. Values set into these fields will beignored. The position and size of the window
should be set by setting the appropriate window attributes.

» A pair of basefieldsand awin_gravity field have been added to the WM_NORMAL_HINTS property.
Window managers will assume values for these fields if the client sets a short property.

The Public Review Drafts

The Consortium review resulted in several incompatible changes. These changes were included in drafts
that were distributed for public review during the first half of 1989.

e Themessagesfield of the WM _HINTS property was found to be unwieldy and difficult to evolve. It has
been replaced by the WM_PROTOCOLS property, but clients that use the earlier mechanism can be

62

Revision History

detected because they set the messages bit in the flags field of the WM _HINTS property, and window
managers can provide a backwards compatibility mode.

» Themechanism described in the earlier draft by which clientsinstalled their own subwindow colormaps
could not be madeto work reliably and mandated some features of thelook and feel. It has been replaced
by the WM_COLORMAP_WINDOWS property. Clients that use the earlier mechanism can be detect-
ed by the WM_COLORMAPS property they set on their top-level window, but providing a reliable
backwards compatibility mode is not possible.

» The recommendations for window manager treatment of top-level window borders have been changed
asthosein the earlier draft produced problems with Visibility events. For nonwindow manager clients,
there is no incompatibility.

» The pseudoroot facility in the earlier draft has been removed. Although it has been successfully imple-
mented, it turns out to be inadequate to support the uses envisaged. An extension will be required to
support these uses fully, and it was felt that the maximum freedom should be I eft to the designers of the
extension. In general, the previous mechanism was invisible to clients and no incompatibility should
result.

» The addition of the WM_DELETE_WINDOW protocol (which prevents the danger that multi-window
clients may be terminated unexpectedly) has meant some changesintheWM_SAVE_Y OURSELF pro-
tocoal, to ensure that the two protocols are orthogonal. Clients using the earlier protocol can be detected
(see WM_PROTOCOLS above) and supported in a backwards compatibility mode.

e The conventions in Section 14.3.1. of Xlib - C Language X Interface regarding properties of type
RGB_COLOR_MAP have been changed, but clients that use the earlier conventions can be detected
because their properties are 4 bytes shorter. These clientswill work correctly if the server supports only
asingle Visual or if they use only the Visual of the root. These are the only cases in which they would
have worked, anyway.

Version 1.0, July 1989

The public review resulted in a set of mostly editorial changes. The changesin version 1.0 that introduced
some degree of incompatibility with the earlier drafts are:

* A new section (Grabs) was added covering the window manager's use of Grabs. The restrictions it
imposes should affect only window managers.

» The TARGETS selection target has been clarified, and it may be necessary for clients to add some
entries to their replies.

» A selection owner using INCR transfer should no longer replace targetsin aMULTIPLE property with
the atom INCR.

» The contents of the O i ent Message event sent by a client to iconify itself has been clarified, but
there should be no incompatibility because the earlier contents would not in fact have worked.

» The border-width in synthetic Conf i gur eNot i fy eventsisnow specified, but this should not cause
any incompatibility.

 Clientsare now asked to set a border-width on al Conf i gur eW ndow requests.

» Window manager properties on icon windows now will be ignored, but there should be no incompati-
bility because there was no specification that they be obeyed previously.

63

Revision History

The ordering of real and synthetic Conf i gur eNot i fy eventsis now specified, but any incompati-
bility should affect only window managers.

The semantics of WM_SAVE_Y OURSELF have been clarified and restricted to be a checkpoint oper-
ation only. Clientsthat were using it as part of a shutdown sequence may need to be modified, especially
if they were interacting with the user during the shutdown.

A kill_id field has been added to RGB_COL OR_MAP properties. Clients using earlier conventions can
be detected by the size of their RGB_COLOR_MAP properties, and the cases that would have worked
will still work.

Version 1.1

Version 1.1 was released with X11R5 in September 1991. In addition to some minor editorial changes,
there were afew semantic changes since Version 1.0:

The section on Device Color Characterization was added.
The meaning of the NULL property type was clarified.

Appropriate references to Compound Text were added.

Public Review Draft, December 1993

The following changes have been made in preparing the public review draft for Version 2.0.

[PO1] Addition of advice to clients on how to keep track of atop-level window's absolute position on
the screen.

[PO3] A technique for clients to detect when it is safe to reuse atop-level window has been added.

[PO6] Colormaps, on colormaps, has been rewritten. A new feature that allows clients to install their
own colormaps has also been added.

[PO8] The LENGTH target has been deprecated.
[P11] The manager selections facility was added.

[P17] Thedefinition of the aspect ratio fieldsof the WM_NORMAL_HINTS property has been changed
to include the base size.

[P19] St ati cGravi ty has been added to the list of values allowed for the win_gravity field of the
WM_HINTS property. The meaning of the Cent er G- avi t y value has been clarified.

[P20] A meansfor clientsto query thel CCCM compliancelevel of thewindow manager has been added.
[P22] The definition of the MULTIPLE selection target has been clarified.

[P25] A definition of "top-level window" has been added. The WM_STATE property has been defined
and exposed to clients.

[P26] The definition of window states has been clarified and the wording regarding window state
changes has been made more consistent.

[P27] Clarified the rules governing when window managers are required to send synthetic Conf i g-
ureNot i fy events.

Revision History

[P28] Added arecommended technique for setting the input focus to awindow as soon asit is mapped.
[P29] The required lifetime of resource |Ds named in window manager properties has been specified.
[P30] Advice for dealing with keystrokes and override-redirect windows has been added.

[P31] A statement on the ownership of resources transferred through the selection mechanism has been
added.

[P32] The definition of the CLIENT_WINDOW target has been clarified.

[P33] A rule about requiring the selection owner to reacquire the selection under certain circumstances
has been added.

[P42] Added several new selection targets.

[P44] Ambiguous wording regarding the withdrawal of top-level windows has been removed.
[P45] A facility for requestors to pass parameters during a sel ection request has been added.
[P49] A convention on discrimated names has been added.

[P57] The C_STRING property type was added.

[P62] An ordering requirement on processing selection requests was added.

[P63] The Vi si bl eHi nt flag was added.

[P64] The session management section has been updated to align with the new session management
protocol. The old session management conventions have been moved to Appendix C.

References to the never-forthcoming Window and Session Manager Conventions Manual have been
removed.

Information on the X Registry and referencesto the session management and | CE documents have been
added.

Numerous editorial and typographical improvements have been made.

Version 2.0, April 1994

The following changes have been made in preparation for releasing the final edition of Version 2.0 with
X11R6.

The PIXMAP selection target has been revised to return a property of type PIXMAP instead of type
DRAWABLE.

The session management section has been revised slightly to correspond with the changes to the X
Session Management Protocol.

Window managers are now prohibited from placing Current Ti me in the timestamp field of
WM_TAKE_FOCUS messages.

In the WM_HINTS property, the Vi si bl eHi nt flag has been renamed to Ur gencyHi nt . Its se-
mantics have also been defined more thoroughly.

Additional editorial and typographical changes have been made.

65

Appendix B. Suggested Protocol
Revisions

During the devel opment of these conventions, a number of inadequacies have been discovered in the core
X11 protocol. They are summarized here as input to an eventual protocol revision design process.

Thereisno way for anyoneto find out thelast-change time of aselection. The Get Sel ect i onOaner
reguest should be changed to return the last-change time as well as the owner.

Thereis no way for aclient to find out which selection atoms are valid.

There would be no need for WM_TAKE_FOCUS if the Focus| n event contained a timestamp and a
previous-focus field. This could avoid the potential race condition. There is space in the event for this
information; it should be added at the next protocol revision.

There is arace condition in the | nst al | Col or map request. It does not take a timestamp and may
be executed after the top-level colormap has been uninstalled. The next protocol revision should pro-
vide the timestamp in the | nst al | Col or map, Uni nst al | Col or map, Li st nstal | edCol -
or maps requestsand inthe Col or mapNot i f y event. Thetimestamp should be used in asimilar way
to the last-focus-change time for the input focus. The lack of timestamps in these packets is the reason
for restricting colormap installation to the window manager.

The protocol needs to be changed to provide some way of identifying the Visual and the Screen of a
colormap.

There should be some way to reclaim assignments to the five nonpreassigned modifiers when they are
no longer needed. The manual method is unpleasantly low-tech.

66

Appendix C. Obsolete Session
Manager Conventions

This appendix contains obsolete conventions for session management using X properties and messages.
The conventions described here are deprecated and are described only for historical interest. For further
information on session management, see X Session Management Protocol.

Properties

The client communicates with the session manager by placing two properties (WM_COMMAND and
WM_CLIENT_MACHINE) on itstop-level window. If the client has a group of top-level windows, these
properties should be placed on the group leader window.

The window manager is responsible for placingaWM_STATE property on each top-level client window
for use by session managers and other clients that need to be able to identify top-level client windows
and their state.

WM _COMMAND Property

TheWM_COMMAND property represents the command used to start or restart the client. By updating this
property, clients should ensure that it always reflects acommand that will restart themintheir current state.
The content and type of the property depend on the operating system of the machine running the client. On
POSI X-conformant systems using 1SO Latin-1 characters for their command lines, the property should:

* Beof type STRING
e Contain alist of null-terminated strings
» Beinitidized from argv

Other systems will need to set appropriate conventions for the type and contents of WM_COMMAND
properties. Window and session managers should not assume that STRING is the type of
WM_COMMAND or that they will be able to understand or display its contents.

Note that WM_COMMAND strings are null-terminated and differ from the general conventions that
STRING properties are null-separated. This inconsistency is necessary for backwards compatibility.

A client with multiple top-level windows should ensure that exactly one of them has a
WM_COMMAND with nonzero length. Zero-length WM_COMMAND properties can be used to reply
to WM_SAVE_Y OURSEL F messages on other top-level windows but will otherwise be ignored.

WM_CLIENT_MACHINE Property

This property isdescribed in WM_CLIENT_MACHINE Property.

Termination

Because they communicate by means of unreliable network connections, clients must be prepared for their
connection to the server to be terminated at any time without warning. They cannot depend on getting
notification that termination isimminent or on being able to use the server to negotiate with the user about
their fate. For example, clients cannot depend on being able to put up a dialog box.

67

Obsolete Session Man-
ager Conventions

Similarly, clientsmay terminate at any timewithout noticeto the session manager. When aclient terminates
itself rather than being terminated by the session manager, it isviewed as having resigned from the session
in question, and it will not be revived if the sessionisrevived.

Client Responses to Session Manager Actions

Clients may need to respond to session manager actions in two ways:
» Saving their internal state

» Deleting awindow

Saving Client State

Clients that want to be warned when the session manager feels that they should save their internal
state (for example, when termination impends) should include the atom WM_SAVE_YOURSELF in the
WM_PROTOCOLS property on their top-level windows to participate in the WM_SAVE_YOURSELF
protocol. They will receive aCl i ent Message event as described in ClientMessage Events with the
atom WM_SAVE_YOURSELF initsdata[Q] field.

Clients that receive WM_SAVE_Y OURSELF should place themselves in a state from which they can
be restarted and should update WM_COMMAND to be a command that will restart them in this state.
The session manager will be waiting for aPr opert yNot i f y event on WM_COMMAND as a confir-
mation that the client has saved its state. Therefore, WM_COMMAND should be updated (perhaps with
a zero-length append) even if its contents are correct. No interactions with the user are permitted during
this process.

Once it has received this confirmation, the session manager will feel free to terminate the client if that is
what the user asked for. Otherwise, if the user asked for the session to be put to sleep, the session manager
will ensure that the client does not receive any mouse or keyboard events.

After receiving a WM_SAVE YOURSELF, saving its state, and updating WM_COMMAND, the
client should not change its state (in the sense of doing anything that would require a change to
WM_COMMAND) until it receives a mouse or keyboard event. Once it does so, it can assume that the
danger is over. The session manager will ensure that these events do not reach clients until the danger is
over or until the clients have been killed.

Irrespective of how they are arranged in window groups, clients with multiple top-level windows should
ensure the following:

e Only one of their top-level windows has a nonzero-length WM_COMMAND property.
e They respond to aWM_SAVE_ Y OURSELF message by:
* First, updating the nonzero-length WM_COMMAND property, if necessary

¢ Second, updating the WM_COMMAND property on the window for which they received the
WM_SAVE_YOURSELF messageif it was not updated in the first step

Receiving WM_SAVE_YOURSELF on awindow is, conceptually, a command to save the entire client
state.

1 This convention has changed since earlier drafts because of the introduction of the protocol in the next section. In the public review draft, there
was ambiguity as to whether WM_SAVE_Y OURSEL F was a checkpoint or a shutdown facility. It is now unambiguously a checkpoint facility; if
ashutdown fecility is judged to be necessary, a separate WM_PROTOCOLS protocol will be developed and registered with the X Consortium.

68

Obsolete Session Man-
ager Conventions

Window Deletion

Windows are deleted using the WM_DELETE_WINDOW protocol, which is described in Window Dele-
tion.

Summary of Session Manager Property Types

The session manager properties are listed in the following table:

Name Type Format See Section
WM_CLIENT_MACHINE TEXT WM_CLIENT_MACHINE Property
WM_COMMAND TEXT WM_COMMAND Property
WM_STATE WM_STATE 32 WM_STATE Property

69

	Inter-Client Communication Conventions Manual
	Table of Contents
	Preface to Version 2.0
	Preface to Version 1.1
	Chapter 1. Introduction
	Evolution of the Conventions
	Atoms
	What Are Atoms?
	Predefined Atoms
	Naming Conventions
	Semantics
	Name Spaces
	Discriminated Names

	Chapter 2. Peer-to-Peer Communication by Means of Selections
	Acquiring Selection Ownership
	Responsibilities of the Selection Owner
	Giving Up Selection Ownership
	Voluntarily Giving Up Selection Ownership
	Forcibly Giving Up Selection Ownership

	Requesting a Selection
	Large Data Transfers
	Use of Selection Atoms
	Selection Atoms
	The PRIMARY Selection
	The SECONDARY Selection
	The CLIPBOARD Selection

	Target Atoms
	Selection Targets with Side Effects
	DELETE
	INSERT_SELECTION
	INSERT_PROPERTY

	Use of Selection Properties
	TEXT Properties
	INCR Properties
	DRAWABLE Properties
	SPAN Properties

	Manager Selections

	Chapter 3. Peer-to-Peer Communication by Means of Cut Buffers
	Chapter 4. Client-to-Window-Manager Communication
	Client's Actions
	Creating a Top-Level Window
	Client Properties
	WM_NAME Property
	WM_ICON_NAME Property
	WM_NORMAL_HINTS Property
	WM_HINTS Property
	WM_CLASS Property
	WM_TRANSIENT_FOR Property
	WM_PROTOCOLS Property
	WM_COLORMAP_WINDOWS Property
	WM_CLIENT_MACHINE Property

	Window Manager Properties
	WM_STATE Property
	WM_ICON_SIZE Property

	Changing Window State
	Configuring the Window
	Changing Window Attributes
	Input Focus
	Colormaps
	Icons
	Pop-up Windows
	Window Groups

	Client Responses to Window Manager Actions
	Reparenting
	Redirection of Operations
	Window Move
	Window Resize
	Iconify and Deiconify
	Colormap Change
	Input Focus
	ClientMessage Events
	Window Deletion

	Redirecting Requests

	Communication with the Window Manager by Means of Selections
	Summary of Window Manager Property Types

	Chapter 5. Session Management and Additional Inter-Client Exchanges
	Client Support for Session Management
	Window Manager Support for Session Management
	Support for ICE Client Rendezvous

	Chapter 6. Manipulation of Shared Resources
	The Input Focus
	The Pointer
	Grabs
	Colormaps
	The Keyboard Mapping
	The Modifier Mapping

	Chapter 7. Device Color Characterization
	XYZ <-> RGB Conversion Matrices
	Intensity (dA RGB Value Conversion

	Chapter 8. Conclusion
	The X Registry

	Appendix A. Revision History
	The X11R2 Draft
	The July 27, 1988, Draft
	The Public Review Drafts
	Version 1.0, July 1989
	Version 1.1
	Public Review Draft, December 1993
	Version 2.0, April 1994

	Appendix B. Suggested Protocol Revisions
	Appendix C. Obsolete Session Manager Conventions
	Properties
	WM_COMMAND Property
	WM_CLIENT_MACHINE Property

	Termination
	Client Responses to Session Manager Actions
	Saving Client State
	Window Deletion

	Summary of Session Manager Property Types

